Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroradiol J ; 31(5): 464-472, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29720033

ABSTRACT

Mild and minor acute neurological symptoms may lead to diagnostic uncertainty, resulting in a heterogeneous group of patients with true ischemic events and stroke mimics with a potential for poor outcomes. More than half of ischemic stroke patients present as minor strokes (National Institutes of Health Stroke Scale score <6). Whole-brain computed tomography perfusion can be used as a diagnostic test for minor stroke, offering a potential method of reducing diagnostic uncertainty in these patients. We hypothesize that whole-brain computed tomography perfusion imaging features could accurately predict infarction in patients with minor neurological deficits. This retrospective chart review enrolled consecutive patients suspected of acute ischemic stroke with a National Institutes of Health Stroke Scale score <6, who underwent whole-brain computed tomography perfusion and follow-up diffusion-weighted magnetic resonance imaging at our institution. Sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios were calculated for whole-brain computed tomography perfusion, using follow-up diffusion-weighted magnetic resonance imaging as a reference standard. A total of 524 patients (mean age: 67 years; range: 17-96 years; 56% men) met the inclusion criteria. Patients were excluded for non-diagnostic ( n = 25) or missing maps ( n = 8) scans, non-ischemic findings ( n = 7), and lack of follow-up magnetic resonance imaging ( n = 336). The final analysis included 148 patients who underwent diffusion-weighted magnetic resonance imaging. Whole-brain computed tomography perfusion has a sensitivity of 0.57 (95% CI: 0.45-0.69) and a specificity of 0.82 (95% CI: 0.71-0.90). The positive and negative predictive values and positive and negative likelihood ratios were 75%, 67%, 3.09, and 0.53, respectively. Our analysis suggests that although whole-brain computed tomography perfusion may offer some value as an adjunctive test for improving confidence in offering stroke treatment, it is not sufficiently sensitive or specific to accurately predict cerebral infarcts in patients with minor neurological symptoms.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain/diagnostic imaging , Perfusion Imaging , Stroke/diagnostic imaging , Tomography, X-Ray Computed , Adolescent , Adult , Aged , Aged, 80 and over , Contrast Media , Diffusion Magnetic Resonance Imaging , Female , Follow-Up Studies , Humans , Male , Middle Aged , Perfusion Imaging/methods , Retrospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed/methods , Young Adult
2.
J Am Chem Soc ; 135(37): 13728-36, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-23964747

ABSTRACT

In this work, we introduce an entirely automated enzyme assay based on capillary electrophoresis coupled to electrospray ionization mass spectrometry termed MINISEP-MS for multiple interfluent nanoinjections-incubation-separation-enzyme profiling using mass spectrometry. MINISEP-MS requires only nanoliters of reagent solutions and uses the separation capillary as a microreactor, allowing multiple substrates to be assayed simultaneously. The method can be used to rapidly profile the substrate specificity of any enzyme and to measure steady-state kinetics in an automated fashion. We used the MINISEP-MS assay to profile the substrate specificity of three aminotransferases (E. coli aspartate aminotransferase, E. coli branched-chain amino acid aminotransferase, and Bacillus sp. YM-1 D-amino acid aminotransferase) for 33 potential amino acid substrates and to measure steady-state kinetics. Using MINISEP-MS, we were able to recapitulate the known substrate specificities and to discover new amino acid substrates for these industrially relevant enzymes. Additionally, we were able to measure the apparent K(M) and k(cat) parameters for amino acid donor substrates of these aminotransferases. Because of its many advantages, the MINISEP-MS assay has the potential of becoming a useful tool for researchers aiming to identify or create novel enzymes for specific biocatalytic applications.


Subject(s)
Biological Assay , Transaminases/metabolism , Biocatalysis , Electrophoresis, Capillary , Escherichia/classification , Escherichia/enzymology , Mass Spectrometry , Substrate Specificity , Transaminases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...