Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27468, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509984

ABSTRACT

Background: Cardiorenal syndrome (CRS) type 4 is prevalent among the chronic kidney disease (CKD) population, with many patients dying from cardiovascular complications. However, limited data regarding cardiac transcriptional changes induced early by CKD is available. Methods: We used a murine unilateral ureteral obstruction (UUO) model to evaluate renal damage, cardiac remodeling, and transcriptional regulation at 21 days post-surgery through histological analysis, RT-qPCR, RNA-seq, and bioinformatics. Results: UUO leads to significant kidney injury, low uremia, and pathological cardiac remodeling, evidenced by increased collagen deposition and smooth muscle alpha-actin 2 expression. RNA-seq analysis identified 76 differentially expressed genes (DEGs) in UUO hearts. Upregulated DEGs were significantly enriched in cell cycle and cell division pathways, immune responses, cardiac repair, inflammation, proliferation, oxidative stress, and apoptosis. Gene Set Enrichment Analysis further revealed mitochondrial oxidative bioenergetic pathways, autophagy, and peroxisomal pathways are downregulated in UUO hearts. Vimentin was also identified as an UUO-upregulated transcript. Conclusions: Our results emphasize the relevance of extensive transcriptional changes, mitochondrial dysfunction, homeostasis deregulation, fatty-acid metabolism alterations, and vimentin upregulation in CRS type 4 development.

2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768323

ABSTRACT

Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.


Subject(s)
Cardiovascular Diseases , Kidney Diseases , Receptors, sigma , Humans , Cardiomegaly , COVID-19/complications , Heart Failure/complications , Ligands , Receptors, sigma/agonists , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/genetics , Receptors, sigma/metabolism , Signal Transduction/physiology , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Kidney Diseases/complications , Kidney Diseases/genetics , Kidney Diseases/metabolism , Sigma-1 Receptor
3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232497

ABSTRACT

Early Chronic Kidney Disease (CKD) is a condition that tends to progress to End-Stage Kidney Disease (ESKD). Early diagnosis of kidney disease in the early stages can reduce complications. Alterations in renal function represent a complication of diabetes mellitus (DM). The mechanisms underlying the progression of CKD in diabetes could be associated with oxidative and inflammatory processes. This study aimed to evaluate the state of inflammation and oxidative stress (OS) on the progression of CKD in the early stages in patients with and without type 2 diabetes mellitus (T2DM). An analytical cross-sectional study was carried out in patients with CKD in early stages (1, 2, 3) with and without T2DM. The ELISA method determined the expression of pro-inflammatory cytokines IL-6 and TNF-α as well as lipoperoxides (LPO), nitric oxide (NO), and superoxide dismutase activity (SOD). Colorimetric methods determined glutathione peroxidase (GPx) and total antioxidant capacity (TAC). Patients with CKD and T2DM had significantly decreased antioxidant defenses for SOD (p < 0.01), GPx (p < 0.01), and TAC (p < 0.01) compared to patients without T2DM. Consequently, patients with T2DM had higher concentrations of oxidant markers, NO (p < 0.01), inflammation markers, IL-6 (p < 0.01), and TNF-α than patients without T2DM. CKD stages were not related to oxidative, antioxidant, and inflammatory marker outcomes in T2DM patients. Patients without T2DM presented an increase in SOD (p = 0.04) and a decrease in NO (p < 0.01) when the stage of CKD increased. In conclusion, patients with T2DM present higher levels of oxidative and inflammatory markers accompanied by a decrease in antioxidant defense. However, these oxidative status markers were associated with CKD stage progression in patients without T2DM. Thus, NO and SOD markers could help detect the early stages of CKD in patients who have not yet developed metabolic comorbidities such as T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Antioxidants/metabolism , Biomarkers/metabolism , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glutathione Peroxidase/metabolism , Humans , Inflammation/metabolism , Interleukin-6/metabolism , Lipid Peroxides , Nitric Oxide , Oxidants , Oxidative Stress , Renal Insufficiency, Chronic/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
J Cardiovasc Dev Dis ; 9(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35621843

ABSTRACT

Myocardial damage in acute myocardial infarctions (AMI) is primarily the result of ischemia−reperfusion injury (IRI). Recognizing the timing of transcriptional events and their modulation by cardioprotective strategies is critical to address the pathophysiology of myocardial IRI. Despite the relevance of pigs for translational studies of AMI, only a few have identified how transcriptomic changes shape cellular signaling pathways in response to injury. We systematically reviewed transcriptomic studies of myocardial IRI and cardioprotection in Sus scrofa. Gene expression datasets were analyzed for significantly enriched terms using the Enrichr analysis tool, and statistically significant results (adjusted p-values of <0.05) for Signaling Pathways, Transcription Factors, Molecular Functions, and Biological Processes were compared between eligible studies to describe how these dynamic changes transform the myocardium from an injured and inflamed tissue into a scar. Then, we address how cardioprotective interventions distinctly modulate the myocardial transcriptome and discuss the implications of uncovering gene regulatory networks for cardiovascular pathologies and translational applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...