Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33719426

ABSTRACT

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Afatinib/chemistry , Afatinib/metabolism , Afatinib/therapeutic use , Allosteric Regulation/drug effects , Binding Sites , Catalytic Domain , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , SOS1 Protein/agonists , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/genetics
3.
Proc Natl Acad Sci U S A ; 116(32): 15823-15829, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31332011

ABSTRACT

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Guanosine Triphosphate/metabolism , Humans , Models, Molecular , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...