Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Food Res Int ; 179: 114027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342547

ABSTRACT

Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.


Subject(s)
Citric Acid , Malates , Oenococcus , Wine , Fermentation , Wine/analysis , Sugars , Hydrogen-Ion Concentration
2.
Int. microbiol ; 26(3): 501-511, Ene-Agos, 2023. ilus, graf, tab
Article in English | IBECS | ID: ibc-223977

ABSTRACT

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.(AU)


Subject(s)
Humans , Computational Biology/methods , Clostridium tyrobutyricum , Oxidation , Lactic Acid , Microbiology , Microbiological Techniques
3.
Int Microbiol ; 26(3): 501-511, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36609955

ABSTRACT

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.


Subject(s)
Clostridium tyrobutyricum , Fermentation , Clostridium tyrobutyricum/genetics , Clostridium tyrobutyricum/metabolism , Metabolic Flux Analysis , Carbon Dioxide/metabolism , Phylogeny , Butyrates/metabolism , Acetates/metabolism , Lactates/metabolism , Hydrogen/metabolism , Computational Biology , Carbon/metabolism
4.
Food Res Int ; 156: 111154, 2022 06.
Article in English | MEDLINE | ID: mdl-35651020

ABSTRACT

Lactic acid bacteria (LAB) are important microorganisms in the food industry as functional starters for the manufacture of fermented food products and as probiotics. Redox potential (Eh) is a parameter of the physicochemical environment of foods that influences key oxidation-reduction reactions involved in process performances and product quality. Eh can be modified by different methods, using redox molecules, catalytic activity of enzymes or LAB themselves, technological treatments like electroreduction or heating, and finally gases. Nowadays new applications for food manufacture must undertake green process innovation. This paper presents the strategies for Eh modification in a sustainable manner for production of LAB biomass (starters, probiotics) and fermented food products (fermented milks, cheeses and others). While the use of chemical or enzymes may be subject to controversy, the use of gases offers new opportunities, in combination with LAB. Protection against food-borne microorganisms, an increasing growth and viability of LAB, and a positive impact on food flavour are expected.


Subject(s)
Fermented Foods , Lactobacillales , Probiotics , Food Industry , Gases , Probiotics/chemistry
5.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31346011

ABSTRACT

Clostridium tyrobutyricum is the main bacterial species leading to the late blowing defect, a major cause of spoilage in semihard and hard cheeses. This study reports the complete genome sequencing, assembly, and annotation of C. tyrobutyricum strain Cirm BIA 2237, formerly called CNRZ 608, isolated from silage.

SELECTION OF CITATIONS
SEARCH DETAIL
...