Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 157: 701-719, 2023 02.
Article in English | MEDLINE | ID: mdl-36476647

ABSTRACT

Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) fabricated via powder metallurgy were investigated as potential biodegradable implant materials. The microstructures, mechanical properties, and corrosion behaviors of the GNP-reinforced ZMCs were characterized using optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Raman spectroscopy, compression testing, and electrochemical and immersion testing in Hanks' balanced salt solution (HBSS). The microstructural study revealed that the GNP was uniformly dispersed in the ZMCs after ball milling and sintering at 420°C for 6 h. The microhardness, compressive yield strength, ultimate compressive strength, and compressive strain of the ZMC-0.2GNP were 69 HV, 123 MPa, 247 MPa, and 23 %, respectively, improvements of ∼ 18 %, 50%, ∼ 28%, and ∼ 15% compared to pure Zn. The corrosion rate of the ZMCs were lower than that of the pure Zn in HBSS, and the ZMC-0.2GNP composite exhibited the lowest corrosion rate of 0.09 mm/y as measured by electrochemical testing. Biocompatibility assessment indicated that the diluted extracts of pure Zn and GNP-reinforced ZMCs with concentrations of 12.5% and 6.25% exhibited no cytotoxicity after cell culturing for up to 5 days, and the diluted extracts of ZMC-0.2 GNP composite revealed more than 90% cell viability after cell culturing of 3 days, showing the satisfying cytocompatibility. STATEMENT OF SIGNIFICANCE: Biodegradable Zn is a promising candidate material for orthopedic implant applications. Nonetheless, the inadequate mechanical strength and ductility of pure Zn limited its clinical application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) were developed via powder metallurgy, and the reinforcing efficacy of GNP on their mechanical properties was investigated. The addition of GNP significantly improved the compressive properties of ZMCs, with the Zn-0.2GNP composite exhibiting the best compressive properties, including 123 MPa compressive yield strength, 247 MPa ultimate compressive strength, and 22.9% compressive strain. Further, the 12.5% concentration extract of the ZMCs exhibited no cytotoxicity after cell culturing for 5 d toward SaOS2 cells.


Subject(s)
Biocompatible Materials , Graphite , Biocompatible Materials/chemistry , Materials Testing , Graphite/pharmacology , Corrosion , Zinc/pharmacology , Zinc/chemistry , Powders , Absorbable Implants , Alloys/chemistry
2.
Acta Biomater ; 149: 387-398, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35817341

ABSTRACT

This study systematically investigated the effect of equal channel angular pressing (ECAP) on the microstructure, mechanical, corrosion, nano-tribological properties and biocompatibility of a newly developed ß Ti-28Nb-35.4Zr (hereafter denoted TNZ) alloy. Results indicated that ECAP of the ß TNZ alloy refined its microstructure by forming ultrafine grains without causing stress-induced phase transformation, leading to formation of a single ß phase. The ECAP-processed TNZ alloy exhibited a compressive yield strength of 960 MPa, and high plastic deformation capacity without fracturing under compression loads. Potentiodynamic polarization tests revealed the higher tendency of ECAP-processed TNZ alloys to form passive oxide films on its surface, which exhibited a lower corrosion rate (0.44±0.07 µm/y) in Hanks' balanced salt solution compared to its as-cast counterpart (0.71±0.10 µm/y). Nanotribological testing also revealed higher resistance of the ECAP-processed TNZ alloy to abrasion, wear and scratching, when compared to its as-cast counterpart. Cytocompatibility and cell adhesion assessments of the ECAP-processed TNZ alloys showed a high viability (111%) of human osteoblast-like SaOS2 cells after 7 d of culturing. Moreover, the ECAP-processed TNZ alloy promoted adhesion and spreading of SaOS2 cells, which exhibited growth and proliferation on alloy surfaces. In summary, significantly enhanced mechanical, corrosion, and biological properties of ECAP-processed TNZ alloy advocate its suitability for load-bearing implant applications. STATEMENT OF SIGNIFICANCE: Equal channel angular pressing (ECAP) provides a unique combination of enhanced mechanical and functional properties of materials by optimizing their microstructures and phase transformations. This study investigated the mechanical, nano-tribological, corrosion, and biocompatibility properties of a newly developed ß Ti-28Nb-35.4Zr (TNZ) alloy processed via ECAP. Our findings indicated that ECAP of the ß TNZ alloy refined its microstructure by forming ultrafine grains without causing stress-induced phase transformation. Compared to its as-cast counterpart, ECAP-processed TNZ exhibited significantly enhanced compressive yield strength, plastic deformation capacity, hardness, wear, and corrosion properties. Moreover, in vitro cytocompatibility and cell adhesion studies revealed high cellular viabilities, growth and proliferation of osteoblast-like SaOS2 cells on the ECAP-processed TNZ alloy.


Subject(s)
Alloys , Titanium , Alloys/chemistry , Alloys/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Compressive Strength , Corrosion , Humans , Materials Testing , Plastics , Titanium/chemistry , Titanium/pharmacology
3.
Bioact Mater ; 6(3): 836-879, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33024903

ABSTRACT

Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs. Among these three BMs, Mg-based materials have undergone the most clinical trials. However, Mg-based BMs generally exhibit faster degradation rates, which may not match the healing periods for bone tissue, whereas Fe-based BMs exhibit slower and less complete in vivo degradation. Zn-based BMs are now considered a new class of BMs due to their intermediate degradation rates, which fall between those of Mg-based BMs and Fe-based BMs, thus requiring extensive research to validate their suitability for biomedical applications. In the present study, recent research and development on Zn-based BMs are reviewed in conjunction with discussion of their advantages and limitations in relation to existing BMs. The underlying roles of alloy composition, microstructure, and processing technique on the mechanical and corrosion properties of Zn-based BMs are also discussed.

4.
Acta Biomater ; 102: 493-507, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31811958

ABSTRACT

Magnesium (Mg) and its alloys are considered promising biodegradable implant materials because of their strength and natural degradation in the human body. However, the high corrosion rate of pure Mg in the physiological environment leads to rapid degradation before adequate bone healing. This mismatch between bone healing and the degradation of Mg implants supports the development of new Mg alloys with the addition of other suitable alloying elements in order to achieve simultaneously high corrosion resistance and desirable mechanical properties. This study systematically investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of Mg-based alloys with the addition of different concentrations of scandium (Sc), i.e., Mg-0.6Zr-0.5Sr-xSc (x = 0.5, 1, 2, 3 wt.%). Results indicated that high concentration of Sc in strontium (Sr)-containing Mg alloys can alter their microstructures by suppressing the intermetallic phases along the grain boundaries and improve the corrosion resistance by forming chemically stable Sc oxide layers on the surfaces of the Mg alloys. Cytotoxicity assessment revealed that the Sc containing Mg alloys did not significantly alter the viability of human osteoblast-like SaOS2 cells. This study highlights the advantages of using Sc as an alloying element to simultaneously tune Mg alloys with higher strength and slower degradation. STATEMENT OF SIGNIFICANCE: Rare earth elements such as scandium (Sc) with both a high solid-solubility and strong affinity towards oxygen can improve the mechanical and corrosion properties of magnesium (Mg) alloys. However, the feasibility of Sc-containing Mg alloys as biodegradable implant materials is scarcely reported. This study investigates the effects of different Sc concentrations on the mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys. Our findings indicated that the addition of Sc significantly improves the mechanical and corrosion properties of Mg-Zr-Sr alloys. Moreover, in vitro cytotoxicity assessment of the Mg-Zr-Sr-Sc alloys did not show any adverse effects on the viability of osteoblast-like cells.


Subject(s)
Absorbable Implants , Alloys/chemistry , Biocompatible Materials/chemistry , Alloys/toxicity , Biocompatible Materials/toxicity , Cell Line, Tumor , Corrosion , Humans , Materials Testing , Tensile Strength
5.
Cureus ; 11(8): e5487, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31656713

ABSTRACT

Anxiety disorders are common among children and adolescents; almost one-third of this population has an anxiety disorder. The most common anxiety disorders in this population are specific phobia (19.3%), social anxiety disorder/ social phobia (9.1 %), and separation anxiety disorder (7.6 %). Pediatric anxiety disorders are often associated with poor psychosocial functioning, academic underachievement, learning difficulties, substance abuse, relationship problems, and suicide behaviors. Psychotherapy, particularly cognitive behavioral therapy as a stand-alone treatment or in combination with medication, is found to be efficacious in the treatment of various anxiety disorders. The early recognition and treatment of anxiety disorders result in better long-term outcomes in children and adolescents. This article summarizes the evidence-based pharmacologic treatments for anxiety disorders in youth, including social anxiety disorder generalized anxiety disorder, separation anxiety disorder, and panic disorder.

6.
Acta Biomater ; 96: 1-19, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31181263

ABSTRACT

Magnesium (Mg) and some of its alloys have attracted extensive interests for biomedical applications as they exhibit biodegradability and low elastic modulus that is closer to natural bones than the currently used metallic implant materials such as titanium (Ti) and its alloys, stainless steels, and cobalt-chromium (Co-Cr) alloys. However, the rapid degradation of Mg alloys and loss of their mechanical integrity before sufficient bone healing impede their clinical application. Our literature review shows that magnesium matrix nanocomposites (MMNCs) reinforced with nanoparticles possess enhanced strength, high corrosion resistance, and good biocompatibility. This article provides a detailed analysis of the effects of nanoparticle reinforcements on the mechanical properties, corrosion behavior, and biocompatibility of MMNCs as promising biodegradable implant materials. The governing equations to quantitatively predict the mechanical properties and underlying synergistic strengthening mechanisms in MMNCs are elucidated. The potential, recent advances, challenges and future research directions in relation to nanoparticles reinforced MMNCs are highlighted. STATEMENT OF SIGNIFICANCE: Critically reviewing magnesium metal matrix nanocomposites (MMNCs) for the biomedical application. Clear definitions of strengthening mechanisms using reinforcement particle in the magnesium matrix, as there were controversial in governing equations of strengthening parameters. Providing better understanding of the effect of particle size, volume fraction, interfacial bonding, and uniform dispersion of reinforcement particles on MMNCs.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Magnesium/chemistry , Materials Testing , Nanocomposites/chemistry , Corrosion , Humans , Orthopedics , Surface Properties
7.
Acta Biomater ; 87: 273-284, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30690210

ABSTRACT

Titanium (Ti) based tissue engineering scaffolds can be used to repair damaged bone. However, successful orthopedic applications of these scaffolds rely on their ability to mimic the mechanical properties of trabecular bone. Selective laser melting (SLM) was used to manufacture scaffolds of a new ß-Ti35Zr28Nb alloy for biomedical applications. Porosity values of the scaffolds were 83% for the FCCZ structure (face centered cubic unit cell with longitudinal struts) and 50% for the FBCCZ structure (face and body centered cubic unit cell with longitudinal struts). The scaffolds had an elastic modulus of ∼1 GPa and a plateau strength of 8-58 MPa, which fall within the values of trabecular bone (0.2-5 GPa for elastic modulus and 4-70 MPa for compressive strength). The SLM-manufactured ß-Ti35Zr28Nb alloy showed good corrosion properties. MTS assay revealed that both the FCCZ and FBCCZ scaffolds had a cell viability similar to the control. SEM observation indicated that the osteoblast-like cells adhered, spread and grew healthily on the surface of both scaffolds after culture for 7, 14 and 28 d, demonstrating good biocompatibility. Overall, the SLM-manufactured Ti35Zr28Nb scaffolds possess promising potential as hard-tissue implant materials due to their appropriate mechanical properties, good corrosion behavior and biocompatibility. STATEMENT OF SIGNIFICANCE: Novel ß Ti35Zr28Nb alloy scaffolds with FCCZ and FBCCZ structures were successfully fabricated by selective laser melting (SLM) for biomedical applications. The scaffolds showed values of elastic modulus of ∼1 GPa and plateau strength of 8-58 MPa, which fall within the ranges of the mechanical properties of trabecular bone. The SLM-manufactured ß Ti35Zr28Nb alloy showed good corrosion properties. Both SLM-manufactured FCCZ and FBCCZ scaffolds exhibited good biocompatibility, with osteoblast-like cells attaching, growing, and spreading in a healthy way on their surfaces after culturing for different periods up to 28 d.


Subject(s)
Alloys , Biocompatible Materials , Bone Substitutes , Lasers , Materials Testing , Osteoblasts/metabolism , Alloys/chemistry , Alloys/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Cell Line , Elastic Modulus , Humans , Niobium/chemistry , Niobium/pharmacology , Osteoblasts/cytology , Silicates/chemistry , Silicates/pharmacology , Surface Properties , Titanium/chemistry , Titanium/pharmacology , Zirconium/chemistry , Zirconium/pharmacology
8.
Adv Biosyst ; 3(3): e1800212, 2019 03.
Article in English | MEDLINE | ID: mdl-32627403

ABSTRACT

Current challenges in existing metallic biomaterials encourage undertaking research in the development of novel materials for biomedical applications. This paper critically reviews the potential of carbon nanotubes (CNT) and graphene as nanoreinforcements in metallic biomaterials for bone tissue engineering. Unique and remarkable mechanical, electrical, and biological properties of these carbon nanomaterials allow their use as secondary-phase reinforcements in monolithic biomaterials. The nanoscale dimensions and extraordinarily large surface areas of CNT and graphene make them suitable materials for purposeful reaction with living organisms. However, the cytocompatibility of CNT and graphene is still a controversial issue that impedes advances in utilizing these promising materials in clinical orthopedic applications. The interaction of CNT and graphene with biological systems including proteins, nucleic acids, and human cells is critically reviewed to assess their cytocompatibity in vitro and in vivo. It is revealed that composites reinforced with CNT and graphene show enhanced adhesion of osteoblast cells, which subsequently promotes bone tissue formation in vivo. This potential is expected to pave the way for developing ground-breaking technologies in regenerative medicine and bone tissue engineering. In addition, current progress and future research directions are highlighted for the development of CNT and graphene reinforced implants for bone tissue engineering.


Subject(s)
Biocompatible Materials , Graphite , Metals , Nanotubes, Carbon , Animals , Cells, Cultured , Humans , Mice
9.
Ultrason Sonochem ; 45: 133-149, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29705306

ABSTRACT

The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp2 carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60%, 80% and 100%). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp2 domain (La) and flake size. This also validates the formation of edge-type defect in graphene. Convincingly, lower amplitude and time (up to 60 min) produce better results for a low defect content and larger particle size as quantified by Raman analysis.

10.
Sci Rep ; 8(1): 5737, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636554

ABSTRACT

Alloys comprised of the highly biocompatible elements titanium, niobium and zirconium have been a major focus in recent years in the field of metallic biomaterials. To contribute to the corpus of data in this field, the current paper presents results from a thorough microstructural and mechanical investigation of Ti-32Nb-6Zr subjected to a variety of ageing treatments. The presented alloy was stabilized to the higher temperature, body-centred cubic phase, showing only minimal precipitation on prolonged ageing, despite the presence of nanoscaled spinodal segregation arising from the Nb-Zr interaction. It further showed excellent mechanical properties, with tensile yield stresses as high as 820 MPa and Young's moduli as low as 53 GPa. This leads to the ratio of strength to modulus, also known as the admissible strain, reaching a maximum of 1.3% after 6 hours ageing. These results are further supported by similar measurements from nanoindentation analysis.

11.
J Mech Behav Biomed Mater ; 78: 224-234, 2018 02.
Article in English | MEDLINE | ID: mdl-29175491

ABSTRACT

The effects of thermomechanical treatment on the microstructure and mechanical properties of a newly developed ß titanium alloy, i.e., Ti-28Nb-35.4Zr (wt%, hereafter denoted Ti-Nb-Zr) were investigated. The as-cast Ti-Nb-Zr alloy was subjected to solution treatment at 890°C for 1h, after which its thickness was reduced by 20%, 56%, 76%, and 86% via cold rolling. Results indicated that annealing at 890°C for 1h after cold rolling at a thickness reduction ratio of 86% resulted in a phase transformation from the stress-induced α" and ω into ß, leading to a recrystallization of a uniform single ß phase. The recrystallized Ti-Nb-Zr alloy exhibited a tensile strength of 633MPa, Young's modulus of 63GPa, and elongation at rupture of 13%, respectively. The cold rolled specimens showed a higher Young's modulus than that of the recrystallized specimen due to the stress-induced ω phase. Transmission electron microscopy (TEM) analysis revealed that ω, α" and ß phases co-existed in the microstructure of the cold-rolled specimens. Electron backscatter diffraction analysis revealed that the deformation mechanisms during thermomechanical processing included kink bands, {332}<113> twins and shear bands; and the predominant deformation mechanism depended on the extent of CR deformation.


Subject(s)
Alloys/chemistry , Materials Testing , Mechanical Phenomena , Niobium/chemistry , Temperature , Elastic Modulus , Hardness , Tensile Strength
12.
Acta Biomater ; 53: 549-558, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28163238

ABSTRACT

While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel ß-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. STATEMENT OF SIGNIFICANCE: The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of great interest in aiding the design and manufacture of highly-biocompatible, porous, metallic biomaterials for orthopedic application.


Subject(s)
Biocompatible Materials/chemical synthesis , Nanostructures/chemistry , Tantalum/chemistry , Titanium/chemistry , Zirconium/chemistry , Alloys/chemistry , Compressive Strength , Elastic Modulus , Materials Testing , Nanostructures/ultrastructure , Stress, Mechanical , Tensile Strength
13.
Bioact Mater ; 1(2): 127-131, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29744401

ABSTRACT

The strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications. To simultaneously meet the requirements of biocompatibility, low elastic modulus and appropriate strength for orthopedic implant materials, it is highly desirable to develop new biocompatible titanium based materials with enhanced strength. In this study, we developed a niobium pentoxide (Nb2O5) reinforced titanium composite via powder metallurgy for biomedical applications. The strength of the Nb2O5 reinforced titanium composites (Ti-Nb2O5) is significantly higher than that of pure titanium. Cell culture results revealed that the Ti-Nb2O5 composite exhibits excellent biocompatibility and cell adhesion. Human osteoblast-like cells grew and spread healthily on the surface of the Ti-Nb2O5 composite. Our study demonstrated that Nb2O5 reinforced titanium composite is a promising implant material by virtue of its high mechanical strength and excellent biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...