Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(50): 47623-47634, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144129

ABSTRACT

Even low concentrations of pollutants in water, particularly heavy metals, can significantly affect the ecosystem and human health. Adsorption has been determined to be one of the most effective techniques of removing pollution from wastewater among the various strategies. To remove heavy metals such as Zn2+ and Pb2+, we prepared a silica-coated CuMgFe2O4 magnetic adsorbent using sol-gel method and tested it for wastewater treatment. X-ray diffraction investigation validated the creation of cubic spinel structure, while morphological analysis showed that silica coating reduces the particle size but boosts the surface roughness of the nanoparticles and also reduces the agglomeration between particles. UV-visible spectroscopy indicates a rise in bandgap and magnetic characteristics analysis indicates low values of magnetization due to silica coating. The kinetic and isotherm parameters for heavy metal ions adsorption onto silica-coated Cu0.50Mg0.50Fe2O4 nanoparticles are calculated by applying pseudo-first-order, pseudo-second-order, Langmuir and Freundlich models. Adsorption kinetics revealed that the pseudo-second-order and Langmuir models are the best fit to explain adsorption kinetics. Synthesized adsorbent revealed 92% and 97% removal efficiencies for Zn2+ and Pb2+ ions, respectively.

2.
ACS Omega ; 8(45): 43139-43150, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024725

ABSTRACT

This study investigated a ternary CdS/TiO2/g-C3N4 heterojunction for degrading synthetic dyes and hydrogen production from aqueous media through visible light-initiated photocatalytic reactions. CdS, TiO2, and g-C3N4 were combined in different mass ratios through a simple hydrothermal method to create CdS/TiO2/g-C3N4 composite photocatalysts. The prepared heterojunction catalysts were investigated by using FTIR, XRD, EDX, SEM, and UV-visible spectroscopy analysis for their crystal structures, functional groups, elemental composition, microtopography, and optical properties. The rhodamine B dye was then degraded by using fully characterized photocatalysts. The maximum dye degradation efficiency of 99.4% was noted in these experiments. The evolution rate of hydrogen from the aqueous solution with the CdS/TiO2/g-C3N4 photocatalyst remained 2910 µmol·h-1·g-1, which is considerably higher than those of g-C3N4, CdS, CdS/g-C3N4, and g-C3N4/TiO2-catalyzed reactions. This study also proposes a photocatalytic activity mechanism for the tested ternary CdS/TiO2/g-C3N4 heterojunctions.

3.
Materials (Basel) ; 15(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36234231

ABSTRACT

Spinel ferrites are widely investigated for their widespread applications in high-frequency and energy storage devices. This work focuses on enhancing the magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50 ferrite series through non-thermal microwave plasma exposure under low-pressure conditions. A series of Ni0.25Cu0.25Zn0.50 ferrites was produced using a facile sol-gel auto-ignition approach. The post-synthesis plasma treatment was given in a low-pressure chamber by sustaining oxygen plasma with a microwave source. The structural formation of control and plasma-modified ferrites was investigated through X-ray diffraction analysis, which confirmed the formation of the fcc cubical structure of all samples. The plasma treatment did not affect crystallize size but significantly altered the surface porosity. The surface porosity increased after plasma treatment and average crystallite size was measured as about ~49.13 nm. Morphological studies confirmed changes in surface morphology and reduction in particle size on plasma exposure. The saturation magnetization of plasma-exposed ferrites was roughly 65% higher than the control. The saturation magnetization, remnant magnetization, and coercivity of plasma-exposed ferrites were calculated as 74.46 emu/g, 26.35 emu/g, and 1040 Oe, respectively. Dielectric characteristics revealed a better response of plasma-exposed ferrites to electromagnetic waves than control. These findings suggest that the plasma-exposed ferrites are good candidates for constructing high-frequency devices.

4.
Materials (Basel) ; 15(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35629531

ABSTRACT

This study investigated the production of Cu2+-doped CoFe2O4 nanoparticles (CFO NPs) using a facile sol-gel technique. The impact of Cu2+ doping on the lattice parameters, morphology, optical properties, and electrical properties of CFO NPs was investigated for applications in electrical devices. The XRD analysis revealed the formation of spinel-phased crystalline structures of the specimens with no impurity phases. The average grain size, lattice constant, cell volume, and porosity were measured in the range of 4.55-7.07 nm, 8.1770-8.1097 Å, 546.7414-533.3525 Å3, and 8.77-6.93%, respectively. The SEM analysis revealed a change in morphology of the specimens with a rise in Cu2+ content. The particles started gaining a defined shape and size with a rise in Cu2+ doping. The Cu0.12Co0.88Fe2O4 NPs revealed clear grain boundaries with the least agglomeration. The energy band gap declined from 3.98 eV to 3.21 eV with a shift in Cu2+ concentration from 0.4 to 0.12. The electrical studies showed that doping a trace amount of Cu2+ improved the electrical properties of the CFO NPs without producing any structural distortions. The conductivity of the Cu2+-doped CFO NPs increased from 6.66 × 10-10 to 5.26 × 10-6 ℧ cm-1 with a rise in Cu2+ concentration. The improved structural and electrical characteristics of the prepared Cu2+-doped CFO NPs made them a suitable candidate for electrical devices, diodes, and sensor technology applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...