Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27613, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533010

ABSTRACT

The chemical co-precipitation method, an effective approach in the synthesis of nanomaterials, was used to synthesize CuO nanoparticles (NPs). Structural and morphological modification of undoped and nitrogen (N) doped CuO nanoparticles were studied thoroughly using X-ray diffraction (XRD), FT-IR and field emission scanning electron microscope (FE SEM). Doping effect on defects was investigated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL) spectroscopy. Thus, the effect of doping on crystallinity, crystallite size, strain induced in lattice, defects and electron-hole recombination rate were investigated. Optical band gap was calculated using Kubelka-Munk function from the diffuse reflectance spectra (DRS) obtained using ultraviolet visible (UV-Vis) spectroscopy. Finally, photocatalytic performance was studied from rhodamine B (Rh B) degradation and reaction kinetics were analyzed. Maximum degradation efficiency was obtained for 1.0 mol% N doped CuO NPs which also exhibited minimum band gap and lowest electron-hole recombination rate. For the optimum doping concentration, nitrogen was found to create oxygen vacancies while substituting oxygen in the lattice, and thus reduce electron-hole recombination rate and increase photocatalytic degradation rate effectively.

2.
Chemosphere ; 283: 131023, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34153922

ABSTRACT

Solid-state 13C Nuclear Magnetic Resonance (NMR) and synchrotron-based X-ray Absorption Near-Edge Structure (XANES) have applications for determining the relative proportions of organic C functional groups in materials. Spectral data obtained by NMR is typically processed using integration (INTEG) whereas XANES spectral data is typically processed using deconvolution (DECONV). The objective of this study was to examine the impact of spectral data collection and processing on the estimated relative proportions of organic C functional groups in biochars. Biochars showed large variations in aromatic C (45-97%), alkyl C (0-23%), O-alkyl C (1-41%), phenolic C (0-20%) and carboxylic C (0-20%). NMR had a better ability than XANES to differentiate % aromatic C across biochars, and the mean % aromatic C was always greater for NMR-INTEG and NMR-DECONV than for XANES-INTEG or XANES-DECONV. NMR-INTEG showed significant associations with NMR-DECONV and XANES-INTEG for % aromatic C and alkyl C, but there were no significant associations between NMR and XANES for % O-alkyl C, phenolic C and carboxylic C. As well, there was no association between NMR-INTEG and XANES-DECONV for any organic C functional group, and in some cases, spectral data collection and processing influenced the quantification of organic C functional groups in a given biochar to the extent that the differences observed were as large as differences observed between biochars when analyzed using the same spectral data collection and processing technique. We conclude that great caution must be taken when comparing studies that determined organic C functional groups in materials using NMR-INTEG versus XANES-DECONV.


Subject(s)
Carbon , Charcoal , Data Collection , Magnetic Resonance Spectroscopy
3.
Bull Environ Contam Toxicol ; 106(6): 936-941, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34014360

ABSTRACT

River water-column and bottom-sediments samples were screened for 160 pesticide compounds to compare the types of pesticides present in the water-column versus bottom-sediments, and between segments of rivers flowing through intensively-managed versus semi-natural habitats. Of the 35 pesticide compounds detected, current-use pesticides accounted for 96% (water) and 76% (bottom sediments). Pesticide mixtures were present in 72% (water) and 51% (sediment) of the total samples. Only the river flowing through the most intensively managed habitat showed a wide range of pesticides in sediments, and many of these pesticides were also present in the water-column of that river. Current-use fungicides were detected in both the water-column and bottom-sediments but not in samples taken from rivers flowing predominantly through semi-natural habitats. The study period (May to August) corresponds to the peak time of regional pesticide applications and hence the time period that is most likely to show elevated concentrations of current-use pesticides in the water-column. The environmental concentrations of pesticide mixtures detected in the water-column were used to calculate Pesticide Toxicity Index (PTI) values as it applies to non-vascular or vascular plants, invertebrates, and fish. The PTI values were largest for non-vascular and vascular plants, reflecting that the pesticide mixtures in water-column were dominated by herbicides.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Environmental Monitoring , Geologic Sediments , Grassland , Pesticides/analysis , Rivers , Water , Water Pollutants, Chemical/analysis
4.
Accid Anal Prev ; 144: 105679, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32688081

ABSTRACT

Reducing nonmotorized crashes requires a profound understanding of the causes and consequences of the crashes at the facility level. Generally, existing literature on bicyclists and pedestrian crash models suffers from two distinct problems: lack of exposure/volume data and inadequacy in capturing potential correlations across various crash aspects. To develop a robust framework for pedestrian crash analysis, this research employed a multivariate model across multiple pedestrian crash severities incorporating a crucial piece of information: pedestrian exposure. A multivariate spatial (conditional autoregressive) Poisson-lognormal model in a Bayesian framework was developed to examine the significant factors influencing the fatal, incapacitating injury (or suspected serious injury), and non-incapacitating injury pedestrian crashes at 409 signalized intersections in the Austin area. Various explanatory variables were used to examine the pedestrian crashes, including traffic characteristics, road geometry, built environment features, and pedestrian exposure volume at intersections, which was estimated through a direct demand model as part of the study. Model results revealed valuable insights. The superior performance of the multivariate model over the univariate model emphasized the need to jointly model multiple pedestrian crash severities. The results showed the significant positive influence of speed limit on fatal pedestrian crashes and revealed that both incapacitating and non-incapacitating injury crashes increase with increasing motorized traffic volume. Bus stop presence was found to have a negative influence on incapacitating injury crashes and a positive influence on non-incapacitating injury crashes. Moreover, the pedestrian volume at intersections positively influences non-incapacitating injury crashes. The difference in influence across crash types warrants careful and focused policy design of intersections to reduce pedestrian crashes of all severity types.


Subject(s)
Accidents, Traffic/statistics & numerical data , Bicycling , Pedestrians , Bayes Theorem , Built Environment , Environment Design , Humans , Injury Severity Score , Texas/epidemiology , Wounds and Injuries/classification , Wounds and Injuries/mortality
5.
Article in English | MEDLINE | ID: mdl-31928915

ABSTRACT

Myositis and scleroderma are both rare autoimmune diseases with female predominance and often occur before and during reproductive years. The rarity of diseases explains the low frequency of concurrent disease and pregnancy. Like other autoimmune diseases, myositis and scleroderma may be more active during pregnancy as well. To date, many patients with myositis and scleroderma can have favorable pregnancy outcomes with careful management. This chapter provides a current overview of pregnancy outcomes in myositis and scleroderma. A major theme that appears to have emerged across these inflammatory diseases is that active maternal disease during pregnancy is associated with adverse pregnancy outcomes, and thus, personalized management is necessary depending on the disease state and comorbidities.


Subject(s)
Autoimmune Diseases , Myositis/diagnosis , Pregnancy Complications/immunology , Scleroderma, Systemic/diagnosis , Antiphospholipid Syndrome/complications , Autoantibodies/blood , Female , Glucocorticoids/therapeutic use , Humans , Myositis/drug therapy , Pregnancy , Pregnancy Outcome , Scleroderma, Systemic/drug therapy
6.
J Environ Qual ; 47(6): 1462-1467, 2018 11.
Article in English | MEDLINE | ID: mdl-30512061

ABSTRACT

Groundwater samples were collected from piezometers and water table wells in both dryland and irrigated agricultural regions of Alberta, Canada, to examine the occurrence of pesticide mixtures. Fourteen current-use pesticides and two historical compounds were detected over a 3-yr sampling period. Pesticide mixtures were detected in ∼3% of the groundwater samples, and the frequency of detection increased from spring (1.5%) to summer (3.8%) and fall (4.8%). Pesticide mixtures always consisted of at least one of two auxin herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D) or 2-methyl-4-chlorophenoxyacetic acid (MCPA). 19% of all samples contained a single pesticide, with auxin herbicides 2,4-D (7.3%), MCPA (4.4%), and clopyralid (3.9%) being most prevalent. We detected 2,4-D predominantly in the fall (72% of 2,4-D detections) and less in spring and summer (28%). We detected MCPA mostly in summer (85% of MCPA detections) and less in spring and fall (15%). Clopyralid was more evenly detected across spring (30%), summer (25%), and fall (45%). Since the auxin herbicides above are typically applied in summer, results suggest that each herbicide may have different mobility and persistence characteristics in prairie soils. Guidelines for Canadian Drinking Water Quality have been set for a range of individual pesticides, but not for pesticide mixtures. If Canada is to establish such guidelines, this study demonstrates that auxin herbicides should be prioritized. In addition, only 7 of the 16 compounds detected in this study have established maximum acceptable concentrations (MACs), excluding clopyralid, which was detected in all three sampling years.


Subject(s)
Environmental Monitoring , Grassland , Groundwater/chemistry , Herbicides/analysis , Water Pollutants, Chemical/analysis , Alberta , Indoleacetic Acids
7.
Bull Environ Contam Toxicol ; 99(5): 595-600, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28913582

ABSTRACT

Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.


Subject(s)
Glycine/analogs & derivatives , Herbicides/metabolism , Typhaceae/metabolism , Wetlands , Glycine/metabolism , Herbicides/analysis , North America , Rhizome/metabolism , Glyphosate
8.
J Environ Sci Health B ; 52(12): 887-895, 2017 Dec 02.
Article in English | MEDLINE | ID: mdl-28961057

ABSTRACT

Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg-1) and elevated (81 to 99 mg kg-1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid/chemistry , Glycine/analogs & derivatives , Phosphates/chemistry , Soil Pollutants/chemistry , Tetracycline/chemistry , Adsorption , Agriculture , Fertilizers , Glycine/chemistry , Herbicides/chemistry , Soil/chemistry , Glyphosate
9.
Chemosphere ; 153: 471-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27035384

ABSTRACT

This research examined the impact of field-aged phosphate and cadmium (Cd) concentrations, and fresh phosphate co-applications, on glyphosate sorption by soil. Soil samples were collected in 2013 from research plots that had received, from 2002 to 2009, annual applications of mono ammonium phosphate (MAP) at 20, 40 and 80 kg P ha(-1) and from products containing 0.4, 70 or 210 mg Cd kg(-1) as an impurity. A series of batch equilibrium experiments were carried out to quantify the glyphosate sorption distribution constant, Kd. Extractable Cd concentrations in soil had no significant effect on glyphosate sorption. Glyphosate Kd values significantly decreased with increasing Olsen-P concentrations in soil, regardless of the pH conditions studied. Experiments repeated with a commercially available glyphosate formulation showed statistically similar results as the experiments performed with analytical-grade glyphosate. Co-applications of MAP with glyphosate also reduced the available sorption sites to retain glyphosate, but less so when soils already contain large amounts of phosphate. Glyphosate Kd values in soils ranged from 173 to 939 L kg(-1) under very strong to strongly acidic condition but the Kd was always <100 L kg(-1) under moderately acidic to slightly alkaline conditions. The highest Olsen-P concentrations in soil reduced Kd values by 25-44% relative to control soils suggesting that, under moderately acidic to slightly alkaline conditions, glyphosate may become mobile by water in soils with high phosphate levels. Otherwise, glyphosate residues in agricultural soils are more likely to be transported off-site by wind and water-eroded sediments than by leaching or runoff.


Subject(s)
Cadmium/analysis , Fertilizers , Glycine/analogs & derivatives , Herbicides/chemistry , Phosphates/chemistry , Soil Pollutants/analysis , Soil/chemistry , Agriculture/methods , Glycine/chemistry , Water , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...