Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 8354, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333093

ABSTRACT

T cell inhibitory mechanisms prevent autoimmune reactions, while cancer immunotherapy aims to remove these inhibitory signals. Chronic ultraviolet (UV) exposure attenuates autoimmunity through promotion of poorly understood immune-suppressive mechanisms. Here we show that mice with subcutaneous melanoma are not responsive to anti-PD1 immunotherapy following chronic UV irradiation, given prior to tumor injection, due to the suppression of T cell killing ability in skin-draining lymph nodes. Using mass cytometry and single-cell RNA-sequencing analyzes, we discover that skin-specific, UV-induced suppression of T-cells killing activity is mediated by upregulation of a Ly6ahigh T-cell subpopulation. Independently of the UV effect, Ly6ahigh T cells are induced by chronic type-1 interferon in the tumor microenvironment. Treatment with an anti-Ly6a antibody enhances the anti-tumoral cytotoxic activity of T cells and reprograms their mitochondrial metabolism via the Erk/cMyc axis. Treatment with an anti-Ly6a antibody inhibits tumor growth in mice resistant to anti-PD1 therapy. Applying our findings in humans could lead to an immunotherapy treatment for patients with resistance to existing treatments.


Subject(s)
Antigens, Ly , CD8-Positive T-Lymphocytes , Immunotherapy , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Antigens, Ly/metabolism , Antigens, Ly/immunology , Mice , Immunotherapy/methods , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Humans , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/pathology , Female , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Skin Neoplasms/pathology , Mitochondria/metabolism , Melanoma/immunology , Melanoma/therapy , Interferon Type I/metabolism
2.
Int J Biol Sci ; 20(10): 4044-4054, 2024.
Article in English | MEDLINE | ID: mdl-39113694

ABSTRACT

The RNA-binding proteins LIN28A and LIN28B contribute to a variety of developmental biological processes. Dysregulation of Lin28A and Lin28B expression is associated with numerous types of tumors. This study demonstrates that Lin28A overexpression in the mouse nephrons leads to severe inflammation and kidney damage rather than to tumorigenesis. Notably, Lin28A overexpression causes inflammation only when expressed in nephrons, but not in the stromal cells of the kidneys, highlighting its cell context-dependent nature. The nephron-specific Lin28A-induced inflammatory response differs from previously described Lin28B-mediated inflammatory feedback loops as it is IL-6 independent. Instead, it is associated with the rapid upregulation of cytokines like Cxcl1 and Ccl2. These findings suggest that the pathophysiological effects of Lin28A overexpression extend beyond cell transformation. Our transgenic mouse model offers a valuable tool for advancing our understanding of the pathophysiology of acute kidney injury, where inflammation is a key factor.


Subject(s)
Inflammation , Mice, Transgenic , Nephrons , RNA-Binding Proteins , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Inflammation/metabolism , Nephrons/metabolism , Kidney/metabolism , Kidney/pathology , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics
3.
Nat Rev Immunol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982311

ABSTRACT

Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.

4.
J Leukoc Biol ; 116(2): 424-435, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38478700

ABSTRACT

Eosinophils have been mainly studied in allergic diseases and parasitic infections. Nonetheless, eosinophils accumulate in a variety of solid tumors, including colorectal cancer, where their presence is associated with improved prognosis. Eosinophils can promote antitumor immunity through various mechanisms, including direct cytotoxicity toward tumor cells and promoting T-cell activation. However, the mechanisms by which tumor cells regulate eosinophil activities are largely unknown. Herein, we characterized the potential interactions between eosinophils and colorectal cancer cells using an unbiased transcriptomic and proteomic analyses approach. Human eosinophils were stimulated with colorectal cancer cell conditioned media, containing tumor cell secreted factors from multiple cancer cell lines. RNA sequencing analysis identified a "core" signature consisting of 101 genes that characterize a baseline transcriptional program for the response of human eosinophils to colorectal cancer cells. Among these, the increased expression of IL-3Rα and its ßc chain was identified and validated at the protein level. Secreted factors from tumor cells potentiated IL-3-induced expression of the adhesion molecule CD11a in eosinophils. Combining proteomics analysis of tumor cell secreted factors with RNA sequencing revealed potential ligand-receptor pairs between tumor cells and eosinophils and the potential involvement of the adhesion molecule CD18 and F2RL3/PAR4. Subsequent functional analyses demonstrated that F2RL3/PAR4 suppresses eosinophil migration in response tumor cell secreted factors. These findings add to the growing body of evidence that eosinophils are conditioned by their local microenvironment. Identifying mechanisms by which eosinophils interact with tumor cells could lead to the development of new immunotherapies for colorectal cancer and other solid tumors.


Subject(s)
Colorectal Neoplasms , Eosinophils , Transcriptome , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Expression Profiling
5.
Curr Protoc ; 4(2): e993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372429

ABSTRACT

Eosinophilic esophagitis (EoE) is an emerging chronic T helper type 2 (Th2)-associated, allergic, and immune-mediated disease, characterized histologically by eosinophil-predominant mucosal inflammation and clinically by esophageal dysfunction. Over the past years, the prevalence of EoE has dramatically increased globally. Until recently, most studies of EoE focused on using human biopsies, which are also used for diagnostic purposes, or esophageal epithelial cell lines, which led to major advances in the understanding of EoE. Despite this, a robust mouse model that mimics human disease is still crucial for both understanding disease pathogenesis and as a preclinical model for testing future therapeutics. Herein, we describe a highly reproducible and robust model of EoE that can be performed using wild-type mice by ear sensitization with oxazolone (OXA) followed by intraesophageal challenges. Experimental EoE elicited by OXA mimics the main histopathological features of human EoE, including intraepithelial eosinophilia, epithelial and lamina propria thickening, basal cell hyperplasia, and fibrosis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of EoE in mice using oxazolone Support Protocol 1: Preparing the mouse esophagus for histological analysis Support Protocol 2: Assessment of epithelial and lamina propria thickness using H&E staining Support Protocol 3: Assessment of eosinophilic infiltration using anti-MBP and basal cell proliferation using anti-Ki-67 staining Support Protocol 4: Flow cytometry of mouse esophageal samples Support Protocol 5: ELISA on protein lysates of esophageal samples.


Subject(s)
Enteritis , Eosinophilia , Eosinophilic Esophagitis , Gastritis , Humans , Mice , Animals , Eosinophilic Esophagitis/diagnosis , Eosinophilic Esophagitis/pathology , Oxazolone , Eosinophils/metabolism , Eosinophils/pathology
7.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215193

ABSTRACT

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Subject(s)
Immunity, Innate , Interleukin-33 , Mice , Animals , Lymphocytes , Tuft Cells , Alarmins , Disease Models, Animal , Fibroblasts , Dexamethasone/pharmacology
8.
Front Immunol ; 14: 1131965, 2023.
Article in English | MEDLINE | ID: mdl-37051242

ABSTRACT

Protective immunity against COVID-19 is orchestrated by an intricate network of innate and adaptive anti-viral immune responses. Several vaccines have been rapidly developed to combat the destructive effects of COVID-19, which initiate an immunological cascade that results in the generation of neutralizing antibodies and effector T cells towards the SARS-CoV-2 spike protein. Developing optimal vaccine-induced anti-SARS- CoV-2 protective immunity depends on a fully competent immune response. Some evidence was gathered on the effects of vaccination outcomes in immunocompromised adult individuals. Nonetheless, protective immunity elicited by the Pfizer Biontech BNT162b2 vaccine in immunocompromised adolescents received less attention and was mainly focused on the antibody response and their neutralization potential. The overall immune response, including T-cell activities, was largely understudied. In this study, we characterized the immune response of vaccinated immunocompromised adolescents. We found that immunocompromised adolescents, which may fail to elicit a humoral response and develop antibodies, may still develop cellular T-cell immunity towards SARS-CoV-2 infections. Furthermore, most immunocompromised adolescents due to genetic disorders or drugs (Kidney and liver transplantation) still develop either humoral, cellular or both arms of immunity towards SARS-CoV-2 infections. We also demonstrate that most patients could mount a cellular or humoral response even after six months post 2nd vaccination. The findings that adolescents immunocompromised patients respond to some extent to vaccination are promising. Finally, they question the necessity for additional vaccination boosting regimens for this population who are not at high risk for severe disease, without further testing of their post-vaccination immune status.


Subject(s)
BNT162 Vaccine , COVID-19 , Adult , Humans , Adolescent , COVID-19/prevention & control , SARS-CoV-2 , Immunity, Cellular , Antibodies, Neutralizing , Immunocompromised Host
9.
Front Immunol ; 14: 1050245, 2023.
Article in English | MEDLINE | ID: mdl-37033950

ABSTRACT

Chronic inflammation is a hallmark charataristic of various inflammatory diseases including inflammatory bowel disease. Subsequently, current therapeutic approaches target immune-mediated pathways as means for therapeutic intervention and promotion of mucosal healing and repair. Emerging data demonstrate important roles for CD300 receptor family members in settings of innate immunity as well as in allergic and autoimmune diseases. One of the main pathways mediating the activities of CD300 family members is via promotion of resolution through interactions with ligands expressed by viruses, bacteria, or dead cells (e.g., phospholipids such as PtdSer and/or ceramide). We have recently shown that the expression of CD300a, CD300b and CD300f were elevated in patients with IBD and that CD300f (but not CD300a) regulates colonic inflammation in response to dextran sodium sulphate (DSS)-induced colitis. Whether CD300b has a role in colitis or mucosal healing is largely unknown. Herein, we demonstrate a central and distinct role for CD300b in colonic inflammation and subsequent repair. We show that Cd300b-/- mice display defects in mucosal healing upon cessation of DSS treatment. Cd300b-/- mice display increased weight loss and disease activity index, which is accompanied by increased colonic histopathology, increased infiltration of inflammatory cells and expression of multiple pro-inflammatory upon cessation of DSS cytokines. Furthermore, we demonstrate that soluble CD300b (sCD300b) is increased in the colons of DSS-treated mice and establish that CD300b can bind mouse and human epithelial cells. Finally, we show that CD300b decreases epithelial EpCAM expression, promotes epithelial cell motility and wound healing. These data highlight a key role for CD300b in colonic inflammation and repair processes and suggest that CD300b may be a future therapeutic target in inflammatory GI diseases.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Intestinal Mucosa , Colitis/chemically induced , Colitis/genetics , Inflammatory Bowel Diseases/metabolism , Inflammation/metabolism
10.
Allergy ; 78(2): 464-476, 2023 02.
Article in English | MEDLINE | ID: mdl-36070083

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease, characterized by eosinophil-rich inflammation in the esophagus. The histopathological and clinical features of EoE have been attributed to overproduction of the type 2 cytokines IL-4 and IL-13, which mediate profound alterations in the esophageal epithelium and neutralizing of their shared receptor component (IL-4Rα) with a human antibody drug (dupilumab) demonstrates clinical efficacy. Yet, the relative contribution of IL-4 and IL-13 and whether the type II IL-4 receptor (comprised of the IL-4Rα chain in association with IL-13Rα1) mediates this effect has not been determined. METHODS: Experimental EoE was induced in WT, Il13ra1-/- , and Krt14Cre /Il13ra1fl/fl mice by skin-sensitized using 4-ethoxymethylene-2-phenyl-2-oxazolin (OXA) followed by intraesophageal challenges. Esophageal histopathology was determined histologically. RNA was extracted and sequenced for transcriptome analysis and compared with human EoE RNAseq data. RESULTS: Induction of experimental EoE in mice lacking Il13ra1 and in vivo IL-13 antibody-based neutralization experiments blocked antigen-induced esophageal epithelial and lamina propria thickening, basal cell proliferation, eosinophilia, and tissue remodeling. In vivo targeted deletion of Il13ra1 in esophageal epithelial cells rendered mice protected from experimental EoE. Single-cell RNA sequencing analysis of human EoE biopsies revealed predominant expression of IL-13Rα1 in epithelial cells and that EoE signature genes correlated with IL-13 expression compared with IL-4. CONCLUSIONS: We demonstrate a definitive role for IL-13 signaling via IL-13Rα1 in EoE. These data provide mechanistic insights into the mode of action of current therapies in EoE and highlight the type II IL-4R as a future therapeutic target.


Subject(s)
Eosinophilic Esophagitis , Humans , Mice , Animals , Eosinophilic Esophagitis/pathology , Interleukin-13 Receptor alpha1 Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-13/metabolism , Epithelial Cells/metabolism
11.
Cancer Cell ; 41(1): 9-11, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36525972

ABSTRACT

Immune checkpoint blockade (ICB) has revolutionized the landscape of cancer treatment. Nevertheless, most cancer patients still do not respond to ICB. In this issue of Cancer Cell, Blomberg et al. illustrate a critical cooperation between T cells and eosinophils, which jointly enhance effectiveness of ICB in breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/therapy , Immune Checkpoint Inhibitors/therapeutic use , T-Lymphocytes , Eosinophils
12.
Front Immunol ; 13: 1041660, 2022.
Article in English | MEDLINE | ID: mdl-36389786

ABSTRACT

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis, host defense and cancer. Although eosinophils have been studied mostly in the context of Type 2 inflammatory responses, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Notably, both Type 1- and Type 2 inflammatory environments are characterized by tissue damage and cell death. Collectively, this raises the possibility that eosinophils can interact with apoptotic cells, which can alter eosinophil activation in the inflammatory milieu. Herein, we demonstrate that eosinophils can bind and engulf apoptotic cells. We further show that exposure of eosinophils to apoptotic cells induces marked transcriptional changes in eosinophils, which polarize eosinophils towards an anti-inflammatory phenotype that is associated with wound healing and cell migration. Using an unbiased RNA sequencing approach, we demonstrate that apoptotic cells suppress the inflammatory responses of eosinophils that were activated with IFN-γ + E. coli (e.g., Type 1 eosinophils) and augment IL-4-induced eosinophil activation (e.g., Type 2 eosinophils). These data contribute to the growing understanding regarding the heterogeneity of eosinophil activation patterns and highlight apoptotic cells as potential regulators of eosinophil polarization.


Subject(s)
Eosinophils , Escherichia coli , Mice , Animals , Eosinophils/metabolism , Escherichia coli/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism , Apoptosis
13.
World Allergy Organ J ; 15(10): 100696, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36254184

ABSTRACT

Background: Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. Eosinophils are traditionally associated and studied in context of allergic diseases. However, recent data implicate their involvement in mucosal tumors, especially in CRC where they may have an anti-tumorigenic function.Our objective was to evaluate whether trends in peripheral blood eosinophil numbers are associated with future diagnosis of CRC. Methods: This retrospective cohort study included adult patients diagnosed with CRC compared to matched controls. We evaluated the linear change in the absolute number of eosinophils (ANE) in peripheral blood over time, described as a correlation coefficient (r). The timeline started 7 years and ended 3 months before diagnosis of CRC. Results: We included 8334 CRC patient/control pairs. Over the study period, no linear correlation was found between levels of eosinophils and time in either group. In a subset of patients (1350, 8.1%), a positive linear correlation was found between levels of eosinophils and time. CRC was significantly more common in these patients (59% vs. 41%, p < 0.01). In a logistic regression, positive r was found to be an independent predictor for CRC (OR 1.31, 95%CI: 1.22-1.41, p < 0.001) with high specificity (0.93) but low sensitivity (0.1). Conclusion: We found higher risk for CRC in patients with a positive linear increase in peripheral eosinophils over time. This may be an indirect clue that eosinophils play a role in the pathogenesis of CRC. Linear changes in ANE may be used in the future to improve screening measures for CRC. Trial registration: Not relevant.

14.
Nat Immunol ; 23(9): 1309-1316, 2022 09.
Article in English | MEDLINE | ID: mdl-36002647

ABSTRACT

Eosinophils are important effector cells and therapeutic targets in allergic diseases. Emerging data indicate that eosinophils infiltrate a variety of solid tumor types and have pleiotropic activities by at least two non-mutually exclusive mechanisms: direct interactions with tumor cells, and intricate cross-talk with lymphocytes. In light of the immune checkpoint inhibition revolution in cancer therapy, we review eosinophil-lymphocyte interactions in the tumor microenvironment. We also analyze potential interactions between eosinophils and lymphocyte subsets, including T cells, natural killer cells and innate lymphoid cells. We provide perspectives on the consequences of these interactions and how eosinophils are accessory cells that can affect the response to various forms of T cell-mediated immunotherapies and might be therapeutically targeted to improve cancer immunotherapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Eosinophils , Humans , Immune Checkpoint Inhibitors , Immunity, Innate , Immunotherapy , Killer Cells, Natural/pathology
17.
Front Immunol ; 12: 802839, 2021.
Article in English | MEDLINE | ID: mdl-34970274

ABSTRACT

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct "Type 1" and "Type 2" phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.


Subject(s)
Eosinophils/immunology , Eosinophils/metabolism , Gene Expression Regulation , Transcriptome , Animals , Biomarkers , Cell Plasticity/genetics , Cell Plasticity/immunology , Computational Biology/methods , Cytokines/genetics , Cytokines/metabolism , Escherichia coli/immunology , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Immune System Phenomena , Immunity , Inflammation Mediators , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/metabolism , Mice
18.
Mayo Clin Proc ; 96(10): 2694-2707, 2021 10.
Article in English | MEDLINE | ID: mdl-34538424

ABSTRACT

Eosinophils play a homeostatic role in the body's immune responses. These cells are involved in combating some parasitic, bacterial, and viral infections and certain cancers and have pathologic roles in diseases including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic gastrointestinal disorders, and hypereosinophilic syndromes. Treatment of eosinophilic diseases has traditionally been through nonspecific eosinophil attenuation by use of glucocorticoids. However, several novel biologic therapies targeting eosinophil maturation factors, such as interleukin (IL)-5 and the IL-5 receptor or IL-4/IL-13, have recently been approved for clinical use. Despite the success of biologic therapies, some patients with eosinophilic inflammatory disease may not achieve adequate symptom control, underlining the need to further investigate the contribution of patient characteristics, such as comorbidities and other processes, in driving ongoing disease activity. New research has shown that eosinophils are also involved in several homeostatic processes, including metabolism, tissue remodeling and development, neuronal regulation, epithelial and microbiome regulation, and immunoregulation, indicating that these cells may play a crucial role in metabolic regulation and organ function in healthy humans. Consequently, further investigation is needed into the homeostatic roles of eosinophils and eosinophil-mediated processes across different tissues and their varied microenvironments. Such work may provide important insights into the role of eosinophils not only under disease conditions but also in health. This narrative review synthesizes relevant publications retrieved from PubMed informed by author expertise to provide new insights into the diverse roles of eosinophils in health and disease, with particular emphasis on the implications for current and future development of eosinophil-targeted therapies.


Subject(s)
Eosinophilia/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Biological Factors/therapeutic use , Biomedical Research , Eosinophil Granule Proteins/metabolism , Humans , Receptors, Cell Surface/metabolism , Respiratory Tract Diseases/metabolism , Tumor Microenvironment , Virus Diseases/immunology
19.
Cancer Res ; 81(21): 5555-5571, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34429328

ABSTRACT

The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.


Subject(s)
Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Eosinophils/immunology , Lung Neoplasms/immunology , Receptors, CCR3/physiology , Tumor Microenvironment , Animals , Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Cell Mol Gastroenterol Hepatol ; 12(4): 1479-1502, 2021.
Article in English | MEDLINE | ID: mdl-34242819

ABSTRACT

BACKGROUND & AIMS: CD4+ T cells are regulated by activating and inhibitory cues, and dysregulation of these proper regulatory inputs predisposes these cells to aberrant inflammation and exacerbation of disease. We investigated the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of the CD4+ T-cell inflammatory response and exacerbation of the colitic phenotype. METHODS: We used Il10-/- spontaneous and CD4+CD45RBhi T-cell transfer models of colitis with PIR-B-deficient (Pirb-/-) mice. Flow cytometry, Western blot, and RNA sequencing analysis was performed on wild-type and Pirb-/- CD4+ T cells. In silico analyses were performed on RNA sequencing data set of ileal biopsy samples from pediatric CD and non-inflammatory bowel disease patients and sorted human memory CD4+ T cells. RESULTS: We identified PIR-B expression on memory CD4+ interleukin (IL)17a+ cells. We show that PIR-B regulates CD4+ T-helper 17 cell (Th17)-dependent chronic intestinal inflammatory responses and the development of colitis. Mechanistically, we show that the PIR-B- Src-homology region 2 domain-containing phosphatase-1/2 axis tempers mammalian target of rapamycin complex 1 signaling and mammalian target of rapamycin complex 1-dependent caspase-3/7 apoptosis, resulting in CD4+ IL17a+ cell survival. In silico analyses showed enrichment of transcriptional signatures for Th17 cells (RORC, RORA, and IL17A) and tissue resident memory (HOBIT, IL7R, and BLIMP1) networks in PIR-B+ murine CD4+ T cells and human CD4+ T cells that express the human homologue leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3). High levels of LILRB3 expression were associated strongly with mucosal injury and a proinflammatory Th17 signature, and this signature was restricted to a treatment-naïve, severe pediatric CD population. CONCLUSIONS: Our findings show an intrinsic role for PIR-B/LILRB3 in the regulation of CD4+ IL17a+ T-cell pathogenic memory responses.


Subject(s)
Gene Expression Regulation , Immunomodulation , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Receptors, Immunologic/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers , Cell Survival/genetics , Cell Survival/immunology , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Immunohistochemistry , Immunologic Memory , Immunophenotyping , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-17/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Receptors, Immunologic/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL