Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Polym Environ ; : 1-18, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37361348

ABSTRACT

Enhancing the melt processability of cellulose is key to broadening its applications. This is done via derivatization of cellulose, and subsequent plasticization and/or blending with other biopolymers, such as polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT). However, derivatization of cellulose tends to reduce its biodegradability. Moreover, traditional plasticizers are non-biodegradable. In this study, we report the influence of polyethylene glycol (PEG) plasticizer on the melt processibility and biodegradability of cellulose diacetate (CD) and its blends with PLA and PBAT. CD was first plasticized with PEG (PEG-200) at 35 wt%, and then blended with PLA and PBAT using a twin-screw extruder. Blends of the PEG plasticized CD with PLA at 40 wt% and with PBAT at 60 wt% were studied in detail. Dynamic mechanical analysis (DMA) showed that PEG reduced the glass transition of the CD from ca. 220 °C to less than 100 °C, indicating effective plasticization. Scanning electron microscopy revealed that the CD/PEG-PBAT blend had a smoother morphology implying some miscibility. The CD/PEG-PBAT blend at 60 wt% PBAT had an elongation-to-break of 734%, whereas the CD/PEG-PLA blend had a tensile strength of 20.6 MPa, comparable to that of the PEG plasticized CD. After a 108-day incubation period under simulated aerobic composting, the CD/PEG-PBAT blend at 60 wt% PBAT exhibited a biodegradation of 41%, whereas that of the CD/PEG-PLA at 40 wt% PLA was 107%. This study showed that melt processible, biodegradable CD blends can be synthesized through plasticization with PEG and blending with PBAT or PLA.

2.
Polymers (Basel) ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501461

ABSTRACT

Polybutylene adipate-co-terephthalate (PBAT) was used in an effort to improve the properties of polybutylene succinate (PBS). The resultant blend consisting of PBS/PBAT (70/30) was reinforced with lignin at different loadings (5 to 15 wt.%) and zinc (ZnO) nanoparticles (1.5 wt.%). Hot melt extrusion and injection moulding were used to prepare the hybrid composites. The mechanical, thermal, physical, self-cleaning, and antimicrobial properties of the resultant hybrid composites were investigated. The transmission electron microscopy (TEM) results confirmed that ZnO was successfully prepared with average diameters of 80 nm. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that there were interactions between the fillers and the blend. The tensile strength and elongation at the break of the resultant materials decreased with increasing the loadings, while the tensile modulus showed the opposite trend. The melting behaviour of the blend was practically unaffected by incorporating lignin and ZnO nanoparticles. In addition, the incorporation of fillers reduced the thermal stability of the materials. Furthermore, the incorporation of ZnO nanoparticles introduced photocatalytic properties into the polymer blend, rendering it to be a functional self-cleaning material and enhancing its antimicrobial activities.

3.
Polymers (Basel) ; 14(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35567063

ABSTRACT

The aim of the present work is to evaluate the rate and mechanisms of the aerobic biodegradation of biopolymer blends under controlled composting conditions using the CO2 evolution respirometric method. The biopolymer blends of poly (butylene adipate terephthalate) (PBAT) blended with poly (lactic acid) (PLA), and PBAT blended with poly (butylene succinate) (PBS) by melt extrusion, were tested to evaluate the amount of carbon mineralized under home and industrial composting conditions. The changes in the structural, chemical, thermal and morphological characteristics of the biopolymer blends before and after biodegradation were investigated by FT-IR, DSC, TGA, XRD and SEM. Both blends showed higher degradation rates under industrial composting conditions, when compared to home composting conditions. This was confirmed by FT-IR analysis showing an increase in the intensity of hydroxyl and carbonyl absorption bands. SEM revealed that there was microbial colony formation and disintegration on the surfaces of the biopolymer blends. The obtained results suggest that industrial composting conditions are the most suitable for an enhanced biodegradation of the biopolymer blends viz PBAT-PBS and PBAT-PLA.

4.
Microsc Res Tech ; 84(11): 2652-2665, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34014009

ABSTRACT

Globally, there is a high demand for bio-based soil stabilizers required for improving the strength properties of weak in situ soil. Microbes and microbial components such as Bacillus spp. have gained interest as soil stabilizers due to their production of spores, bio-enzymes, and bio-polymers. However, the current approach for any microlevel assessment of bio-additives and in situ soil improvement is limited. This paper provides data for microstructural evaluation of stabilized soil material for the postulation of the mode of action. In this study, the microbonding effect (i.e., bio-based cementation, bio-clogging, and soil particle bio-coating) is successfully observed within the various stabilizing prototypes, obtained from a novel Bacillus spp. using advanced methods, namely field emission gun-scanning electron microscopy and Fourier transform-infrared spectroscopy. The results show that treated soil versus untreated soil properties are altered by the bio-additive/s stabilizing effect. These indicator tests provide data for further bio-stabilizer product prototype development and processes (i.e., improved products in terms of strength and moisture susceptibility). The use of microscopy and spectroscopy was sufficient for the preliminary selection of suitable candidates for soil stabilization.


Subject(s)
Polymers , Soil , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
5.
J Hazard Mater ; 412: 125228, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33516103

ABSTRACT

The microbial fuel cell is a unique advantageous technology for the scientific community with the simultaneous generation of green energy along with bioelectroremediation of persistent hazardous materials. In this work, a novel approach of integrated system with bioelectricity generation from septic tank wastewater by native microflora in the anode chamber, while Psathyrella candolleana with higher ligninolytic enzyme activity was employed at cathode chamber for the biodegradation of polycyclic aromatic hydrocarbons (PAHs). Six MFC systems designated as MFC1, MFC2, MFC3, MFC4, MFC5, and MFC6 were experimented with different conditions. MFC1 system using natural microflora of STWW (100%) at anode chamber and K3[Fe(CN)6] as cathode buffer showed a power density and current density of 110 ± 10 mW/m2 and 90 ± 10 mA/m2 respectively. In the other five MFC systems 100% STWW was used at the anode and basidiomycetes fungi in the presence or absence of individual PAHs (naphthalene, acenaphthene, fluorene, and anthracene) at the cathode. MFC2, MFC3, MFC4, MFC5, and MFC6 had showed power density of 132 ± 17 mW/m2, 138 ± 20 mW/m2, 139 ± 25 mW/m2, and 147 ± 10 mW/m2 respectively. MFC2, MFC3, MFC4, MFC5, and MFC6 had showed current density of 497 ± 17 mA/m2, 519 ± 10 mA/m2, 522 ± 21 mA/m2 and 525 ± 20 mA/m2 respectively. In all the MFC systems, the electrochemical activity of anode biofilm was evaluated by cyclic voltammetry analysis and biofilms on all the MFC systems electrode surface were visualized by confocal laser scanning microscope. Biodegradation of PAHs during MFC experimentations in the cathode chamber was estimated by UV-Vis spectrophotometer. Overall, MFC6 system achieved maximum power density production of 525 ± 20 mA/m2 with 77% of chemical oxygen demand removal and 54% of coulombic efficiency at the anode chamber and higher anthracene biodegradation (62 ± 1.13%) at the cathode chamber by the selected Psathyrella candolleana at 14th day. The present natural microflora - basidiomycetes fungal coupled MFC system offers excellent opening towards the simultaneous generation of green electricity and PAHs bioelectroremediation.


Subject(s)
Basidiomycota , Bioelectric Energy Sources , Environmental Pollutants , Agaricales , Electricity , Electrodes , Fungi , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...