Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Phys Chem C Nanomater Interfaces ; 128(16): 6621-6635, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38690534

ABSTRACT

A series of steady-state and time-resolved spectroscopies were performed on a set of eight carbene-metal-amide (cMa) complexes, where M = Cu and Au, that have been used as photosensitizers for photosensitized electrocatalytic reactions. Using ps-to-ns and ns-to-ms transient absorption spectroscopies (psTA and nsTA, respectively), the excited-state kinetics from light absorption, intersystem crossing (ISC), and eventually intermolecular charge transfer were thoroughly characterized. Using time-correlated single photon counting (TCSPC) and psTA with a thermally activated delayed fluorescence (TADF) model, the variation in intersystem crossing (ISC), (S1 → T1) rates (∼3-120 × 109 s-1), and ΔEST values (73-115 meV) for these compounds were fully characterized, reflecting systematic changes to the carbene, carbazole, and metal. The psTA additionally revealed an early time relaxation (rate ∼0.2-0.8 × 1012 s-1) attributed to solvent relaxation and vibrational cooling. The nsTA experiments for a gold-based cMa complex demonstrated efficient intermolecular charge transfer from the excited cMa to an electron acceptor. Pulse radiolysis and bulk electrolysis experiments allowed us to identify the character of the transient excited states as ligand-ligand charge transfer as well as the spectroscopic signature of oxidized and reduced forms of the cMa photosensitizer.

3.
J Am Chem Soc ; 145(25): 13846-13857, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37319428

ABSTRACT

Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 µs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.

4.
J Am Chem Soc ; 144(39): 17916-17928, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36126274

ABSTRACT

Two-coordinate carbene-MI-amide (cMa, MI = Cu, Ag, Au) complexes have emerged as highly efficient luminescent materials for use in a variety of photonic applications due to their extremely fast radiative rates through thermally activated delayed fluorescence (TADF) from an interligand charge transfer (ICT) process. A series of cMa derivatives was prepared to examine the variables that affect the radiative rate, with the goal of understanding the parameters that control the radiative TADF process in these materials. We find that blue-emissive complexes with high photoluminescence efficiencies (ΦPL > 0.95) and fast radiative rates (kr = 4 × 106 s-1) can be achieved by selectively extending the π-system of the carbene and amide ligands. Of note is the role played by the increased separation between the hole and electron in the ICT excited state. Analysis of temperature-dependent luminescence data and theoretical calculations indicate that the hole-electron separation exerts a primary effect on the energy gap between the lowest-energy singlet and triplet states (ΔEST) while keeping the radiative rate for the singlet state relatively unchanged. This interpretation provides guidelines for the design of new cMa derivatives with even faster radiative rates in addition to those with slower radiative rates and thus extended excited state lifetimes.

SELECTION OF CITATIONS
SEARCH DETAIL
...