Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
JCI Insight ; 2(18)2017 09 21.
Article in English | MEDLINE | ID: mdl-28931765

ABSTRACT

Dendritic cells (DCs) are important in regulating immunity and tolerance and consist of functionally distinct subsets that differentially regulate T lymphocyte function. The underlying basis for this subset specificity is lacking, particularly in humans, where the classification of tissue DCs is currently incomplete. Examination of healthy human epidermal Langerhans cells and dermal skin cells revealed a tissue CD5-expressing DC subtype. The CD5+ DCs were potent inducers of cytotoxic T cells and Th22 cells. The products of these T cells, IL-22 and IFN-γ, play a key role in the pathogenesis of psoriasis. Remarkably, CD5+ DCs were significantly enriched in lesional psoriatic skin compared with distal tissues, suggesting their involvement in the disease. We show that CD5+ DCs can be differentiated from hematopoietic progenitor cells independently of the CD5- DCs. A progenitor population found in human cord blood and in the dermal skin layer, marked as CD34-CD123+CD117dimCD45RA+, was an immediate precursor of these CD11c+CD1c+CD5+ DCs. Overall, our discovery of the CD5-expressing DC subtype suggests that strategies to regulate their composition or function in the skin will represent an innovative approach for the treatment of immune-mediated disorders in and beyond the skin.


Subject(s)
CD5 Antigens/immunology , Dendritic Cells/cytology , Psoriasis/immunology , Skin/cytology , Antigens, CD/immunology , Cell Differentiation , Dendritic Cells/immunology , Humans , Immunophenotyping , Skin/immunology
2.
J Exp Med ; 212(5): 743-57, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25918340

ABSTRACT

Characterization of functionally distinct dendritic cell (DC) subsets in mice has fueled interest in whether analogous counterparts exist in humans. Transcriptional modules of coordinately expressed genes were used for defining shared functions between the species. Comparing modules derived from four human skin DC subsets and modules derived from the Immunological Genome Project database for all mouse DC subsets revealed that human Langerhans cells (LCs) and the mouse XCR1(+)CD8α(+)CD103(+) DCs shared the class I-mediated antigen processing and cross-presentation transcriptional modules that were not seen in mouse LCs. Furthermore, human LCs were enriched in a transcriptional signature specific to the blood cross-presenting CD141/BDCA-3(+) DCs, the proposed equivalent to mouse CD8α(+) DCs. Consistent with our analysis, LCs were highly adept at inducing primary CTL responses. Thus, our study suggests that the function of LCs may not be conserved between mouse and human and supports human LCs as an especially relevant therapeutic target.


Subject(s)
Antigen Presentation/physiology , Gene Expression Regulation/immunology , Langerhans Cells/immunology , Skin/immunology , Animals , Antigens, Differentiation/immunology , Humans , Langerhans Cells/cytology , Mice , Skin/cytology
3.
Proc Natl Acad Sci U S A ; 109(46): 18885-90, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23112154

ABSTRACT

Human Langerhans cells (LCs) are highly efficient at priming cytolytic CD8(+) T cells compared with dermal CD14(+) dendritic cells (DCs). Here we show that dermal CD14(+) DCs instead prime a fraction of naïve CD8(+) T cells into cells sharing the properties of type 2 cytokine-secreting CD8(+) T cells (TC2). Differential expression of the CD8-antagonist receptors on dermal CD14(+) DCs, the Ig-like transcript (ILT) inhibitory receptors, explains the difference between the two types of DCs. Inhibition of CD8 function on LCs inhibited cytotoxic T lymphocytes (CTLs) and enhanced TC2 generation. In addition, blocking ILT2 or ILT4 on dermal CD14(+) DCs enhanced the generation of CTLs and inhibited TC2 cytokine production. Lastly, addition of soluble ILT2 and ILT4 receptors inhibited CTL priming by LCs. Thus, ILT receptor expression explains the polarization of CD8(+) T-cell responses by LCs vs. dermal CD14(+) DCs.


Subject(s)
Antigens, CD/immunology , Dermis/immunology , Langerhans Cells/metabolism , Lipopolysaccharide Receptors , Membrane Glycoproteins/immunology , Receptors, Immunologic/immunology , T-Lymphocytes, Cytotoxic/immunology , Antigens, CD/biosynthesis , Antigens, CD/genetics , Dermis/cytology , Dermis/metabolism , Humans , Langerhans Cells/cytology , Langerhans Cells/immunology , Leukocyte Immunoglobulin-like Receptor B1 , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Receptors, Immunologic/biosynthesis , Receptors, Immunologic/genetics , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...