Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Clin Pract ; 65(1): 41-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21091596

ABSTRACT

AIM: To determine the effects of imperfect adherence (i.e. occasionally missing prescribed doses), and the influence of rate of loss of antihypertensive effect during treatment interruption, on the predicted clinical effectiveness of antihypertensive drugs in reducing mean systolic blood pressure (SBP) and cardiovascular disease (CVD) risk. METHOD: The effects of imperfect adherence to antihypertensive treatment regimens were estimated using published patterns of missed doses, and taking into account the rate of loss of antihypertensive effect when doses are missed (loss of BP reduction in mmHg/day; the off-rate), which varies between drugs. Outcome measures were the predicted mean SBP reduction and CVD risk, determined from the Framingham Risk Equation for CVD. RESULTS: In patients taking 75% of prescribed doses (typical of clinical practice), only long-acting drugs with an off-rate of ∼1 mmHg/day were predicted to maintain almost the full mean SBP-lowering effect throughout the modelled period. In such patients, using shorter-acting drugs (e.g. an off-rate of ∼5-6 mmHg/day) was predicted to lead to a clinically relevant loss of mean SBP reduction of > 2 mmHg. This change also influenced the predicted CVD risk reduction; in patients with a baseline 10-year CVD risk of 27.0% and who were taking 75% of prescribed doses, a difference in off-rate from 1 to 5 mmHg/day led to a predicted 0.5% absolute increase in 10-year CVD risk. CONCLUSIONS: In patients who occasionally miss doses of antihypertensives, modest differences in the rate of loss of antihypertensive effect following treatment interruption may have a clinically relevant impact on SBP reduction and CVD risk. While clinicians must make every effort to counsel and encourage each of their patients to adhere to their prescribed medication, it may also be prudent to prescribe drugs with a low off-rate to mitigate the potential consequences of missing doses.


Subject(s)
Antihypertensive Agents/administration & dosage , Hypertension/drug therapy , Aged , Cardiovascular Diseases/etiology , Drug Administration Schedule , Female , Humans , Male , Medication Adherence , Prescription Drugs/therapeutic use , Risk Assessment , Risk Factors , Time Factors
3.
Curr Pharm Des ; 9(21): 1733-44, 2003.
Article in English | MEDLINE | ID: mdl-12871205

ABSTRACT

Arterial Hypertension (AH) is characterized by reduced nitric oxide (NO) biosynthesis, activation of the Renin-Angiotensin-Aldosteron-System (RAAS), vasoconstriction, and microvascular rarefaction. The latter contributes to target organ damage, especially in left ventricular hypertrophy, and may partially be due to impaired angiogenesis. Angiogenesis, the formation of new microvessels and microvascular networks from existing ones, is a highly regulated process that arises in response to hypoxia and other stimuli and that relieves tissue ischemia. In AH, angiogenesis seems impaired. However, blood pressure alone does not affect angiogenesis, and microvascular rarefaction is present in normotensive persons with a family history for AH. Normal or increased NO in several processes and diseases enables or enhances angiogenesis (e.g. in portal hypertension) and reduced NO biosynthesis (for example, in a rat model of AH, in other disease models in vivo, and in endothelial NO Synthase knock out mice) impairs angiogenesis. Angiogenic growth factors such as Vascular Endothelial Growth Factor (VEGF) and Fibroblast Growth Factor (FGF) induce NO and require NO to elicit an effect. Effector molecules and corresponding receptors of the RAAS either induce (Bradykinin, Angiotensin II) or perhaps inhibit angiogenesis. The pattern of Bradykinin- and Angiotensin II-receptor expression and the capacity to normalize NO biosynthesis may determine whether ACE-inhibitors, Angiotensin II-receptor antagonists and other substances affect angiogenesis. Reconstitution of a normally vascularized tissue by reversal of impaired angiogenesis with drugs such as ACE inhibitors and AT1 receptor antagonists may contribute to successful treatment of hypertension-associated target organ damage, e.g. left ventricular hypertrophy.


Subject(s)
Blood Vessels/physiopathology , Hypertension/pathology , Hypertension/physiopathology , Neovascularization, Pathologic/physiopathology , Neovascularization, Physiologic/physiology , Animals , Humans , Hypertension/metabolism , Microcirculation , Nitric Oxide/biosynthesis , Renin-Angiotensin System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...