Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomech ; 87: 206-210, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30905404

ABSTRACT

The study compared the centre of pressure measurements (COP) and vertical ground reaction forces (vGRF) from a pressure insole system to that from force plates (FP) during two flywheel quadriceps resistance exercises: leg press and squat. The comparison was performed using a motion capture system and simultaneous measurements of COP and vGRF from FP and insoles. At lower insole-vGRF (<250 N/insole) COP accuracy deteriorated and those data were excluded from further analysis. The insoles systematically displaced the COP slightly posteriorly and medially compared to the FP measurements. Pearson's coefficient of correlation (r) between insole- and FP-COP showed good agreement in both the anteroposterior (squat: r = 0.96, leg press: r = 0.97) and mediolateral direction (squat: r = 0.84, leg press: r = 0.90), whereas the root-mean-square errors (RMSE) were lower in the mediolateral (squat: 3.9 mm, leg press: 4.5 mm) than the anteroposterior (squat and leg press: 11.8 mm) direction. Vertical GRF was slightly overestimated by the insoles in leg press and RMSE were greater in leg press (8% of peak force) than in squat (6%). Overall, results were within the range of previous studies performed on gait. The strong agreement between insole and FP measurements indicates that insoles may replace FPs in field applications and biomechanical computations during resistance exercise, provided that the applied force is sufficient.


Subject(s)
Biophysics/instrumentation , Foot Orthoses/standards , Foot/physiology , Resistance Training , Adult , Biomechanical Phenomena , Exercise , Gait , Humans , Male , Posture , Pressure , Shoes
SELECTION OF CITATIONS
SEARCH DETAIL