Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Health Care Manag Sci ; 24(3): 623-639, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33991293

ABSTRACT

Agent-based network modeling (ABNM) simulates each person at the individual-level as agents of the simulation, and uses network generation algorithms to generate the network of contacts between individuals. ABNM are suitable for simulating individual-level dynamics of infectious diseases, especially for diseases such as HIV that spread through close contacts within intricate contact networks. However, as ABNM simulates a scaled-version of the full population, consisting of all infected and susceptible persons, they are computationally infeasible for studying certain questions in low prevalence diseases such as HIV. We present a new simulation technique, agent-based evolving network modeling (ABENM), which includes a new network generation algorithm, Evolving Contact Network Algorithm (ECNA), for generating scale-free networks. ABENM simulates only infected persons and their immediate contacts at the individual-level as agents of the simulation, and uses the ECNA for generating the contact structures between these individuals. All other susceptible persons are modeled using a compartmental modeling structure. Thus, ABENM has a hybrid agent-based and compartmental modeling structure. The ECNA uses concepts from graph theory for generating scale-free networks. Multiple social networks, including sexual partnership networks and needle sharing networks among injecting drug-users, are known to follow a scale-free network structure. Numerical results comparing ABENM with ABNM estimations for disease trajectories of hypothetical diseases transmitted on scale-free contact networks are promising for application to low prevalence diseases.


Subject(s)
Communicable Diseases , Algorithms , Communicable Diseases/epidemiology , Computer Simulation , Health Services , Humans , Prevalence
2.
Med Decis Making ; 38(4): 520-530, 2018 05.
Article in English | MEDLINE | ID: mdl-29577814

ABSTRACT

Implementation of organized cancer screening and prevention programs in high-income countries (HICs) has considerably decreased cancer-related incidence and mortality. In low- and middle-income countries (LMICs), screening and early diagnosis programs are generally unavailable, and most cancers are diagnosed in late stages when survival is very low. Analyzing the cost-effectiveness of alternative cancer control programs and estimating resource needs will help prioritize interventions in LMICs. However, mathematical models of natural cancer onset and progression needed to conduct the economic analyses are predominantly based on populations in HICs because the longitudinal data on screening and diagnoses required for parameterization are unavailable in LMICs. Models currently used for LMICs mostly concentrate on directly calculating the shift in distribution of cancer diagnosis as an evaluative measure of screening. We present a mathematical methodology for the parameterization of natural cancer onset and progression, specifically for LMICs that do not have longitudinal data. This full onset and progression model can help conduct comprehensive analyses of cancer control programs, including cancer screening, by considering both the positive impact of screening as well as any adverse consequences, such as over-diagnosis and false-positive results. The methodology has been applied to breast, cervical, and colorectal cancers for 2 regions, under the World Health Organization categorization: Eastern Sub-Saharan Africa (AFRE) and Southeast Asia (SEARB). The cancer models have been incorporated into the Spectrum software and interfaced with country-specific demographic data through the demographic projections (DemProj) module and costing data through the OneHealth tool. These software are open-access and can be used by stakeholders to analyze screening strategies specific to their country of interest.


Subject(s)
Developing Countries , Early Detection of Cancer/economics , Markov Chains , Models, Theoretical , Neoplasms/diagnosis , Breast Neoplasms , Colorectal Neoplasms , Cost-Benefit Analysis , Female , Humans , Neoplasms/economics , Neoplasms/prevention & control , Uterine Cervical Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...