Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6947, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521802

ABSTRACT

Shigellosis remains a common gastrointestinal disease mostly in children < 5 years of age in developing countries. Azithromycin (AZM), a macrolide, is currently the first-line treatment for shigellosis in Bangladesh; ciprofloxacin (CIP) and ceftriaxone (CRO) are also used frequently. We aimed to evaluate the current epidemiology of antimicrobial resistance (AMR) and mechanism(s) of increasing macrolide resistance in Shigella in Bangladesh. A total of 2407 clinical isolates of Shigella from 2009 to 2016 were studied. Over the study period, Shigella sonnei was gradually increasing and become predominant (55%) over Shigella flexneri (36%) by 2016. We used CLSI-guided epidemiological cut-off value (ECV) for AZM in Shigella to set resistance breakpoints (zone-diameter ≤ 15 mm for S. flexneri and ≤ 11 mm for S. sonnei). Between 2009 and 2016, AZM resistance increased from 22% to approximately 60%, CIP resistance increased by 40%, and CRO resistance increased from zero to 15%. The mphA gene was the key macrolide resistance factor in Shigella; a 63MDa conjugative middle-range plasmid was harboring AZM and CRO resistance factors. Our findings show that, especially after 2014, there has been a rapid increase in resistance to the three most effective antibiotics. The rapid spread of macrolide (AZM) resistance genes among Shigella are driven by horizontal gene transfer rather than direct lineage.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Macrolides/pharmacology , Macrolides/therapeutic use , Drug Resistance, Bacterial/genetics , Azithromycin/pharmacology , Azithromycin/therapeutic use , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Ceftriaxone/pharmacology , Microbial Sensitivity Tests , Protein Synthesis Inhibitors/pharmacology , Plasmids/genetics
2.
Ann Clin Transl Neurol ; 11(1): 133-142, 2024 01.
Article in English | MEDLINE | ID: mdl-37955408

ABSTRACT

OBJECTIVE: Interleukin-10 (IL-10) is a multifunctional cytokine that exerts both pro- and anti-inflammatory effects on the immune system as well as in the pathogenesis of Guillain-Barré syndrome (GBS). We investigated whether the three common polymorphisms -1082 G/A(rs1800896), -819 C/T(rs1800871), and -592 C/A(rs1800872) in the promoter region of IL-10 have any influence on the susceptibility, severity, and clinical outcome of GBS. METHODS: IL-10 promoter polymorphisms were investigated in 152 patients with GBS and 152 healthy controls from Bangladesh using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP), and allele-specific oligonucleotide-PCR (ASO-PCR). Haplotype patterns and frequencies were analyzed using Heatmaply R-package, chi-square, and Fisher's exact test. The serum level of IL-10 was measured through enzyme-linked immunosorbent assays. p-values < 0.05 were considered statistically significant. RESULTS: IL-10 promoter polymorphisms -1082 G/A, -819 C/T, and -592 C/A were not associated with GBS susceptibility. The homozygous -819 TT genotype showed a tendency with susceptibility (p = 0.029; pc = 0.08) and was prevalent in axonal variants of GBS compared to demyelinating subtypes and controls (p = 0.042, OR = 8.67, 95% CI = 1.03-72.97; pc = 0.123 and p = 0.005, OR = 4.2, 95% CI = 1.55-11.40; pc = 0.015, respectively). Haplotype analysis revealed 19 patterns of genotypes and high IL-10 expression haplotype combinations (GCC/GTA, GCC/ATA, and GCC/GCA) may have influence on disease severity (p = 0.026; pc = 0.078). Serum expression of IL-10 was elevated in GBS patients ([GBS, 12.16 ± 45.71] vs. [HC, 0.65 ± 5.17] pg/mL; p = 0.0027) and varied with disease severity ([severe-GBS, 15.25 ± 51.72] vs. [mild-GBS, 3.59 ± 19.79] pg/mL, p = 0.046). INTERPRETATION: The -819 TT genotypes influence axonal GBS, and high frequency of IL-10 expression haplotype combination with elevated serum IL-10 may play an important role in disease severity.


Subject(s)
Guillain-Barre Syndrome , Interleukin-10 , Humans , Genetic Predisposition to Disease/genetics , Guillain-Barre Syndrome/genetics , Haplotypes , Interleukin-10/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics
3.
Res Sq ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37461575

ABSTRACT

Shigellosis remains a common gastrointestinal disease mostly in children <5 years of age in developing countries. Azithromycin (AZM), a macrolide, is currently the first-line treatment for shigellosis in Bangladesh; ciprofloxacin (CIP) and ceftriaxone (CRO) are also used frequently. We aimed to evaluate the current epidemiology of antimicrobial resistance (AMR) and mechanism(s) of increasing macrolide resistance in Shigella in Bangladesh. A total of 2407 clinical isolates of Shigella from 2009 to 2016 were studied. Over the study period, Shigella sonnei was gradually increasing and become predominant (55%) over Shigella flexneri (36%) by 2016. We used CLSI-guided epidemiological cut-off value (ECV) for AZM in Shigella to set resistance breakpoints (zone-diameter ≤ 15 mm for S. flexneri and ≤ 11 mm for S. sonnei). Between 2009 and 2016, AZM resistance increased from 22% to approximately 60%, CIP resistance increased by 40%, and CRO resistance increased from zero to 15%. The mphA gene was the key macrolide resistance factor in Shigella; a 63MDa conjugative middle-range plasmid was harboring AZM and CRO resistance factors. Our findings show that, especially after 2014, there has been a rapid increase in resistance to the three most effective antibiotics. The rapid spread of macrolide (AZM) resistance genes among Shigella are driven by horizontal gene transfer rather than direct lineage.

SELECTION OF CITATIONS
SEARCH DETAIL
...