Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 15(20): e202200614, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35879863

ABSTRACT

Studies of the ammonia oxidation reaction (AOR) for the synthesis of nitrite and nitrate (NO2/3 - ) have been limited to a small number of catalytic materials, majorly Pt based. As the demand for nitrate-based products such as fertilisers continues to grow, exploration of alternative catalysts is needed. Herein, 19 metals immobilised as particles on carbon fibre electrodes were tested for their catalytic activity for the ammonia electrooxidation to NO2/3 - under alkaline conditions (0.1 m KOH). Nickel-based electrodes showed the highest overall NO2/3 - yield with a rate of 5.0±1.0 nmol s-1 cm-2 , to which nitrate contributed 62±8 %. Cu was the only catalyst that enabled formation of nitrate, at a rate of 1.0±0.4 nmol s-1 cm-2 , with undetectable amounts of nitrite produced. Previously unexplored in this context, Fe and Ag also showed promise and provided new insights into the mechanisms of the process. Ag-based electrodes showed strong indications of activity towards NH3 oxidation in electrochemical measurements but produced relatively low NO2/3 - yields, suggesting the formation of alternate oxidation products. NO2/3 - production over Fe-based electrodes required the presence of dissolved O2 and was more efficient than with Ni on longer timescales. These results highlight the complexity of the AOR mechanism and provide a broad set of catalytic activity and nitrate versus nitrite yield data, which might guide future development of a practical process for the distributed sustainable production of nitrates and nitrites at low and medium scales.


Subject(s)
Nitrates , Nitrites , Ammonia , Fertilizers , Carbon Fiber , Nickel , Oxidation-Reduction
2.
Front Chem ; 2: 79, 2014.
Article in English | MEDLINE | ID: mdl-25309898

ABSTRACT

Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

3.
Acta Crystallogr C ; 60(Pt 4): i37-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15071194

ABSTRACT

The structure of the high-temperature scheelite-type polymorph of cerium niobium tetraoxide, CeNbO(4), has been determined using time-of-flight neutron powder diffraction data collected both in situ at 1073 K in air and in vacuo. In both cases, the structure was found to be tetragonal, with I4(1)/a symmetry and without any significant deviation from the stoichiometric composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...