Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(48): 69029-69041, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34286431

ABSTRACT

Biogeochemical and ecological responses to limited external nutrient loading are poorly understood in tropical semi-enclosed coastal lagoons which are highly influenced by hydrological and salinity regimes. With objectives towards ecosystem sustainability via better management of the nutrient inputs, investigations were carried out to estimate the water, salt, and nutrient budget of "Pulicat" hypersaline coastal lagoon for the year 2018-2019. The budget revealed that the annual rate of precipitation and evaporation are the major driving factors regulating the annual residual flow in the lagoon. Limited exchange of water and material had resulted in a hypersaline condition with high spatial and temporal variation in salinity ranging from 20 to 103. In the absence of external loading, nutrient enrichment by internal compensation had resulted in DIN enrichment. DIN constituents are mainly contributed by ammonia, indicative of remineralisation through benthic regeneration. The extended water residence time and enhanced primary production has converted the inner lagoon into a limited phosphate system. The TRIX index also indicates a decline in the trophic status transforming the lagoon from a mesotrophic to a eutrophic system.


Subject(s)
Ecosystem , Seawater , Environmental Monitoring , Nutrients , Salinity
2.
Environ Sci Pollut Res Int ; 28(43): 61497-61512, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34176045

ABSTRACT

Phytoplankton structure and patterns are key components to forecast the net result of the gain and loss process that outline the resilience of the lagoon ecosystem. In order to understand the phytoplankton community structure and its relationship with the environmental variables in the shallow hypersaline Pulicat lagoon, east coast of India, observations were carried out during August 2018-January 2019 covering the three seasons: premonsoon (PrM), monsoon (M), and postmonsoon (PoM). The salinity of the lagoon varied with a minimum of 12.1 for the M and a maximum of 81.65 during the PoM. The clustering analysis performed on the phytoplankton abundance data separated the lagoon into three sectors: north sector (NS), central sector (CS), and south sector (SS). A total of 59 taxa/morphotypes from four taxonomic classes (Bacillariophyceae, Chlorophyceae, Cyanophyceae, and Dinophyceae) were recorded during the study period. The class Bacillariophyceae was dominant in the lagoon both spatially and temporally by 44.06% with Chaetoceros borealis as dominant species. Presence of characteristic species like Dunaliella sp. was observed in the higher salinity, whereas Pediastrum duplex and Scenedesmus sp. were dominant in the freshwater influx areas. The individual-based functional approach allowed grouping these taxa into 11 functional entities based on the derived 4 functional trait values (cell size, trophic regime, mobility, and coloniality). Formation of algal blooms of Protoperidinium sp. (3.3×105ind L-1) and Odentella sp. (2.8×105ind L-1) was observed in the SS during PoM as a result of reduced water exchange in the lagoon. During the same period, toxin-producing strains like Anabaena sp. and Nostoc sp. of Cyanophyceae were also recorded. Correlating the three sectors of the lake (NS, CS, and SS), it is observed that the physical, chemical, and biological properties of the lake varied continuously depending on the season and freshwater availability. Seasonal nutrient stoichiometry played a significant role in regulating the community structure and distribution pattern of phytoplankton communities of the lagoon.


Subject(s)
Diatoms , Phytoplankton , Ecosystem , Environmental Monitoring , India , Lakes , Seasons
3.
Environ Sci Pollut Res Int ; 27(15): 18303-18316, 2020 May.
Article in English | MEDLINE | ID: mdl-32185733

ABSTRACT

Planktonic ciliate composition and distribution together with physicochemical variables were investigated in a shallow hypersaline lagoon, Pulicat, India, during three seasons, i.e., pre-monsoon (PRM), monsoon (MON), and post-monsoon (POM). The low freshwater inflow, evaporation, and closure of the lake mouth were the main factors for the hypersaline conditions in Pulicat Lake. The average depth and salinity were 1.8 ± 0.12 m (0.8 to 2.8 m) and 35.3 ± 1.68 (12.5 to 61), respectively. A total of 29 ciliate taxa belonging to 18 genera and five classes were identified. Strombidium conicum (24%) was the dominant species followed by Euplotes sp. (10.7%) and Stenosomella sp. (7.02%). Spirotrichea (84%) was the dominant class followed by Oligohymenophorea (9.6%) and Heterotrichea (5.8%). Fabrea salina, a typical species in hypersaline systems, was abundant at locations where the salinity was more than 35. Multivariate analysis using the Bray-Curtis similarity, followed by SIMPROF (Similarity Percentage Analysis), on ciliate abundance data revealed three ciliate assemblages characterizing south, central, and north of the lake at 40% similarity (SIMPROF, cophenetic correlation = 0.622, P = 5%). Both ciliate abundance and chlorophyll-a were positively correlated with salinity. Species richness and evenness were higher in the south sector when compared with those in the other two sectors. Biotic-environmental interaction through canonical correspondence analysis (CCA) inferred that the combined effects of salinity, chlorophyll-a, and nutrient levels are the key factors responsible for the distribution of the ciliate species, suggesting that ciliates can be considered to be potential bioindicators of water quality.


Subject(s)
Ciliophora , Lakes , India , Plankton , Seasons , Water Quality
4.
Mar Pollut Bull ; 121(1-2): 372-380, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28619629

ABSTRACT

The impact of seasonal coastal upwelling on the dynamics of dissolved inorganic carbon (DIC) and sea-air fluxes of CO2 along the coastal waters of Kochi was investigated during 2015, as a part of Ecosystem Modelling Project. The surface water pCO2 varied from 396 to 630µatm during the study period. Significant inter-seasonal variations were found in the distribution of physico-chemical variables and surface pCO2. An increase of 102.1µatm of pCO2 was noticed over a two-decade period with a rate of 5.3µatmy-1. There was an agreement between the fluxes of CO2 and net ecosystem production (NEP) with respect to the trophic status while NEP was higher than CO2 fluxes by a factor of 3.9. The annual net ecosystem exchange (NEE) was estimated to be 15.02mmolCm-2d-1 indicating that the coastal waters of Kochi are highly heterotrophic in nature.


Subject(s)
Carbon Cycle , Carbon Dioxide , Carbon , Ecosystem , Middle East , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...