Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1624: 461236, 2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32540076

ABSTRACT

On-line coupled high performance liquid chromatography-gas chromatography-flame ionization detection (HPLC-GC-FID) used for determining mineral oil aromatic hydrocarbons (MOAH) in foods, particularly in certain oils and fats, may be disturbed by interfering olefins present as natural food components or resulting from raffination of the oils and fats. While some interference can be coped with by disregarding their peaks, others overload GC to the extent of obscuring the MOAH or form humps which need to be distinguished from the hump formed by the MOAH. In the latter cases, it is necessary to remove these interferences prior to HPLC-GC analysis. So far, epoxidation of the olefins to increase their retention time beyond that of the MOAH in HPLC is the best method available, though imperfect by causing some loss of MOAH and sometimes incomplete removal of the interference. Two methods are re-evaluated; preference is given to a slightly modified version of that proposed by Nestola and Schmidt. The performances are comparable: the losses of MOAH are similar and with both methods not all interfering olefins may be removed from refined edible oils. However, the Nestola/Schmidt method has practical advantages, the main ones being that no cooling is necessary and no solvent needs to be evaporated, which facilitates automation. Potential residual interferences must be recognized and subtracted, which can be by the characteristics of the hump they form in HPLC-GC-FID, by GCxGC-FID or by GCxGC-MS using characteristic mass fragments.


Subject(s)
Epoxy Compounds/chemistry , Food Contamination/analysis , Food , Hydrocarbons, Aromatic/analysis , Mineral Oil/analysis , Alkenes/isolation & purification , Chromatography, High Pressure Liquid , Ethanol/chemistry , Olive Oil/analysis , Online Systems
2.
Article in English | MEDLINE | ID: mdl-29210614

ABSTRACT

The use of recycled paperboard for packaging dry foods is in the interest of sustainability of resources, but in most applications, the food must be protected against contamination, such as by a functional barrier on the internal surface of the paperboard box. After application, the paperboard is usually stacked or reeled before making boxes. During this period, the food-contact surface of the barrier layer is in contact with the outer side of the paperboard, which may result in set-off and subsequent contamination of food. A method is described for the determination of this path of migration, based on the taped format also used for the measurement of the barrier efficiency. Recycled paperboard containing the three surrogate substances n-heptadecane, 4-methyl benzophenone and dipropyl phthalate was taped to the food-contact side of the barrier layer. Pressure onto the test packs did not seem to be a relevant parameter. After periods of interest, a piece of the paperboard with the barrier layer was extracted and analysed for the surrogate substances. Another piece may be brought into contact with silicone paper to simulate the transfer to food. After 2 weeks at 60°C (simulating about 1 year at 25°C), set-off and the transfer to the silicone paper exceeded 1% for all barrier materials tested, but after 6 weeks at 40°C (around half a year at 25°C), set-off remained below 1% for all barrier layers except a multilayer with polyethylene on the food-contact surface. The preliminary conclusion is that set-off should be taken seriously, but may be kept low enough to provide sufficient protection of the packed food.


Subject(s)
Food Analysis , Food Contamination/analysis , Food Packaging , Paper , Recycling , Alkanes/analysis , Benzophenones/analysis , Phthalic Acids/analysis
3.
J Chromatogr A ; 1521: 140-149, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-28941808

ABSTRACT

On-line coupled high performance liquid chromatography-gas chromatography-flame ionization detection (HPLC-GC-FID) is the most widely used method for the analysis of mineral oil hydrocarbons in food, food contact materials, tissues and cosmetics. With comprehensive two-dimensional gas chromatography (GCxGC), a tool became available for better establishing the elution sequence of the various types of hydrocarbons from the HPLC column used for isolating the mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). The performance of a heavily used HPLC column with reduced retention for MOAH was investigated to improve the robustness of the method. Updates are recommended that render the MOSH/MOAH separation less dependent of the state of the HPLC column and more correct in cases of highly refined mineral oil products of high molecular mass. Cyclohexyl cyclohexane (Cycy), used as internal standard, turned out to be eluted slightly after cholestane (Cho); apparently the size exclusion effect predominates the extra retention by ring number on the 60Å pore size silica gel. Hence, Cycy can be used to determine the end of the MOSH fraction. Long chain alkyl benzenes were eluted earlier than tri-tert. butyl benzene (Tbb). It is proposed to start the MOAH transfer immediately after the MOSH fraction and use a gradient causing breakthrough of dichloromethane (visible in the UV chromatogram) at a time suitable to elute perylene (Per) at the end of the fraction. In this way, a decrease in retention power of the HPLC column can be tolerated without adjustment of the MOAH fraction until some MOAH start being eluted into the MOSH fraction. This critical point can be checked either with di(2-ethylhexyl) benzene (DEHB) as a marker or the HPLC-UV chromatogram. Finally, based on new findings in rats and human tissues, it is recommended to integrate the MOSH and MOAH up to the retention time of the n-alkane C40.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, Gas , Cosmetics/chemistry , Food Analysis/methods , Food Contamination/analysis , Hydrocarbons/analysis , Animals , Chromatography, High Pressure Liquid , Flame Ionization , Humans , Hydrocarbons, Aromatic/analysis , Mineral Oil/chemistry , Rats , Silica Gel/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...