Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 4(8): e00721, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30112456

ABSTRACT

Infrastructure development, specifically road paving, contributes socio-economic benefits to society worldwide. However, detrimental environmental effects of road paving have been documented, most notably increased deforestation. Beyond deforestation, we hypothesize that road paving introduces "unseen" regional scale effects on forests, due to changes to vegetation dynamics. To test this hypothesis, we focus on the tri-national frontier in the southwestern Amazon that has been subject to construction of the Inter-Oceanic Highway (IOH) between 1987 and 2010. We use a long-term remotely sensed vegetation index as a proxy for vegetation dynamics and combine these with field-based socio-ecological data and biophysical data from global datasets. We find 4 areas of shared vegetation dynamics associated with increasing extent of road paving. Applying Dynamic Factor Analysis, an exploratory dimension-reduction time series analysis technique, we identify common trends and covariates in each area. Common trends, indicating underlying unexplained effects, become relatively less important as paving increases, and covariates increase in importance. The common trends are dominated by lower frequency signals possibly embodying long-term climate variability. Human-related covariates become more important in explaining vegetation dynamics as road paving extent increases, particularly family density and travel time to market. Natural covariates such as minimum temperature and soil moisture become less important. The change in vegetation dynamics identified in this study indicates a possible change in ecosystem services along the disturbance gradient. While this study does not include all potential factors controlling dynamics and disturbance of vegetation in the region, it offers important insights for management and mitigation of effects of road paving projects. Infrastructure planning initiatives should make provisions for more detailed vegetation monitoring after road completion, with a broader focus than just deforestation. The study highlights the need to mitigate population-driven pressures on vegetation like family density and access to new markets.

2.
Sci Total Environ ; 575: 701-712, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27743652

ABSTRACT

When used in addition to environmentally friendly cultural practices, buffer zones can limit the water transfer of pollutants, in particular pesticides, towards water resources. The choice of the buffer zones' type and positioning, considering water pathways and flow components, is crucial. When this choice has been performed, buffer zones dimensions must still be optimized, according to the environment characteristics, which strongly influence their effectiveness. This article presents a method and its associated tools, including VFSMOD model, which aim at optimizing vegetative buffer zones (VFS) sizes, by simulating their transfer mitigation effectiveness. A first application of this methodology is illustrated on a small agricultural watershed in Brittany. A second application, based on the simulation of a large number of scenarios, leads to the elaboration of nomograms. They allow optimizing VFS size in a simpler way from the user's point of view.

3.
J Environ Qual ; 39(5): 1570-84, 2010.
Article in English | MEDLINE | ID: mdl-21043263

ABSTRACT

Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.


Subject(s)
Fresh Water , Seawater , Water Movements
4.
J Environ Qual ; 37(3): 1271-8, 2008.
Article in English | MEDLINE | ID: mdl-18453447

ABSTRACT

Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake.


Subject(s)
Fertilizers , Nitrogen/metabolism , Zea mays/growth & development , Zea mays/metabolism , Climate , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Water
5.
J Contam Hydrol ; 80(1-2): 49-70, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16102872

ABSTRACT

The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land use patterns in the watershed. The results indicate that peak concentrations of agrochemicals in groundwater could be reduced by improving fertilization practices (by splitting and modifying timing of applications) and by operating the regional canal system to maintain the water table low, especially during the rainy periods.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Fertilizers/analysis , Fresh Water/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Factor Analysis, Statistical , Florida , Models, Theoretical , Rain , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...