Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Soc Sci Med ; 288: 113295, 2021 11.
Article in English | MEDLINE | ID: mdl-32921522

ABSTRACT

Metapopulation dynamics play a critical role in driving endemic persistence and transmission of childhood infections. The endemic threshold concept, also referred to as critical community size (CCS), is a key example and is defined as the minimum population size required to sustain a continuous chain of infection transmission. The concept is fundamental to the implementation of effective vaccine-based disease control programmes. Vaccination serves to increase endemic threshold population size, promoting disease fadeout and eventual elimination of infection. To date, empirical investigations of the relationship between vaccination and endemic threshold population size have tended to focus on isolated populations in island communities. Very few studies have examined endemic threshold dynamics in 'mainland' regional populations with complex hierarchical spatial structures and varying levels of connectivity between subpopulations. The present paper provides the first spatially explicit analysis of the temporal changes in endemic threshold populations for one vaccine-preventable childhood infection (pertussis) in two dynamic regions of England and Wales: Lancashire and South Wales. Drawing upon weekly disease records of the Registrar-General of England and Wales over a 30-year period (January 1940-December 1969) regression techniques were used to estimate the endemic threshold size for pertussis in the two study regions. Survival analyses were performed to compare disease fadeout duration and probability for both regions in the pre-vaccine and vaccine eras, respectively. Our findings reveal the introduction of mass vaccination led to a considerable increase in threshold size for both Lancashire (~387,333) and South Wales (~1,460,667). Significant growth in fadeout duration was observed in the vaccine era for pertussis non-hotspots in both regions, consistent with geographical synchronisation of epidemic activity. Regional differences in endemic threshold populations reflect significant regional variations in spatial connectivity, population dispersion and level of geographical isolation.


Subject(s)
Whooping Cough , England/epidemiology , Humans , Population Density , Spatio-Temporal Analysis , Vaccination , Whooping Cough/epidemiology , Whooping Cough/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...