Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(2): 93, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765032

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-ß1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-ß1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Transforming Growth Factor beta1/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Enzyme Inhibitors/therapeutic use , Cell Line, Tumor , Pancreatic Neoplasms
2.
Nat Commun ; 14(1): 1078, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841868

ABSTRACT

Protein arginine methyltransferase (PRMT) 5 is over-expressed in a variety of cancers and the master transcription regulator E2F1 is an important methylation target. We have explored the role of PRMT5 and E2F1 in regulating the non-coding genome and report here a striking effect on long non-coding (lnc) RNA gene expression. Moreover, many MHC class I protein-associated peptides were derived from small open reading frames in the lncRNA genes. Pharmacological inhibition of PRMT5 or adjusting E2F1 levels qualitatively altered the repertoire of lncRNA-derived peptide antigens displayed by tumour cells. When presented to the immune system as either ex vivo-loaded dendritic cells or expressed from a viral vector, lncRNA-derived peptides drove a potent antigen-specific CD8 T lymphocyte response, which translated into a significant delay in tumour growth. Thus, lncRNA genes encode immunogenic peptides that can be deployed as a cancer vaccine.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , Neoplasms/therapy , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Peptides/genetics , CD8-Positive T-Lymphocytes , Protein-Arginine N-Methyltransferases
3.
Cell Death Dis ; 11(7): 572, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709847

ABSTRACT

The pRb-E2F pathway is a critical point of regulation in the cell cycle and loss of control of the pathway is a hallmark of cancer. E2F1 is the major target through which pRb exerts its effects and arginine methylation by PRMT5 plays a key role in dictating E2F1 activity. Here we have explored the functional role of the PRMT5-E2F1 axis and highlight its influence on different aspects of cancer cell biology including viability, migration, invasion and adherence. Through a genome-wide expression analysis, we identified a distinct set of genes under the control of PRMT5 and E2F1, including some highly regulated genes, which influence cell migration, invasio and adherence through a PRMT5-dependent mechanism. Most significantly, a coincidence was apparent between the expression of PRMT5 and E2F1 in human tumours, and elevated levels of PRMT5 and E2F1 correlated with poor prognosis disease. Our results suggest a causal relationship between PRMT5 and E2F1 in driving the malignant phenotype and thereby highlight an important pathway for therapeutic intervention.


Subject(s)
Cell Movement , E2F1 Transcription Factor/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction , Cell Line, Tumor , Cell Movement/genetics , Cortactin/genetics , Cortactin/metabolism , Down-Regulation/genetics , E2F1 Transcription Factor/genetics , Focal Adhesions/metabolism , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Signal Transduction/genetics
4.
Sci Adv ; 5(6): eaaw4640, 2019 06.
Article in English | MEDLINE | ID: mdl-31249870

ABSTRACT

E2F is a family of master transcription regulators involved in mediating diverse cell fates. Here, we show that residue-specific arginine methylation (meR) by PRMT5 enables E2F1 to regulate many genes at the level of alternative RNA splicing, rather than through its classical transcription-based mechanism. The p100/TSN tudor domain protein reads the meR mark on chromatin-bound E2F1, allowing snRNA components of the splicing machinery to assemble with E2F1. A large set of RNAs including spliced variants associate with E2F1 by virtue of the methyl mark. By focusing on the deSUMOylase SENP7 gene, which we identified as an E2F target gene, we establish that alternative splicing is functionally important for E2F1 activity. Our results reveal an unexpected consequence of arginine methylation, where reader-writer interplay widens the mechanism of control by E2F1, from transcription factor to regulator of alternative RNA splicing, thereby extending the genomic landscape under E2F1 control.


Subject(s)
Arginine/genetics , E2F Transcription Factors/genetics , Alternative Splicing/genetics , Cell Line , Chromatin/genetics , Endopeptidases/genetics , Genomics , Humans , Methylation , RNA/genetics
5.
Cell Death Dis ; 9(5): 577, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29760477

ABSTRACT

A prerequisite for protein synthesis is the transcription of ribosomal rRNA genes by RNA polymerase I (Pol I), which controls ribosome biogenesis. UBF (upstream binding factor) is one of the main Pol I transcription factors located in the nucleolus that activates rRNA gene transcription. E2F7 is an atypical E2F family member that acts as a transcriptional repressor of E2F target genes, and thereby contributes to cell cycle arrest. Here, we describe an unexpected role for E2F7 in regulating rRNA gene transcription. We have found that E2F7 localises to the perinucleolar region, and further that E2F7 is able to exert repressive effects on Pol I transcription. At the mechanistic level, this is achieved in part by E2F7 hindering UBF recruitment to the rRNA gene promoter region, and thereby reducing rRNA gene transcription, which in turn compromises global protein synthesis. Our results expand the target gene repertoire influenced by E2F7 to include Pol I-regulated genes, and more generally suggest a mechanism mediated by effects on Pol I transcription where E2F7 links cell cycle arrest with protein synthesis.


Subject(s)
E2F7 Transcription Factor/metabolism , Protein Biosynthesis , RNA, Ribosomal/biosynthesis , Transcription, Genetic , Cell Cycle Checkpoints , E2F7 Transcription Factor/genetics , Humans , MCF-7 Cells , Pol1 Transcription Initiation Complex Proteins/genetics , Pol1 Transcription Initiation Complex Proteins/metabolism , Promoter Regions, Genetic , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA, Ribosomal/genetics
6.
Mol Cell Oncol ; 4(6): e1360977, 2017.
Article in English | MEDLINE | ID: mdl-29209648

ABSTRACT

The retinoblastoma protein (pRb) is considered to be one of the key regulators of cell proliferation. Here we describe our recent findings that linker histone H1.2 is an interaction partner for pRb and impacts upon the genome-wide chromatin binding properties of pRb. Consequently, H1.2 influences transcriptional repression and cell cycle control.

7.
Cell Death Differ ; 24(12): 2139-2149, 2017 12.
Article in English | MEDLINE | ID: mdl-28841214

ABSTRACT

The retinoblastoma tumour suppressor protein (pRb) classically functions to regulate early cell cycle progression where it acts to enforce a number of checkpoints in response to cellular stress and DNA damage. Methylation at lysine (K) 810, which occurs within a critical CDK phosphorylation site and antagonises a CDK-dependent phosphorylation event at the neighbouring S807 residue, acts to hold pRb in the hypo-phosphorylated growth-suppressing state. This is mediated in part by the recruitment of the reader protein 53BP1 to di-methylated K810, which allows pRb activity to be effectively integrated with the DNA damage response. Here, we report the surprising observation that an additional methylation-dependent interaction occurs at K810, but rather than the di-methyl mark, it is selective for the mono-methyl K810 mark. Binding of the mono-methyl PHF20L1 reader to methylated pRb occurs on E2F target genes, where it acts to mediate an additional level of control by recruiting the MOF acetyltransferase complex to E2F target genes. Significantly, we find that the interplay between PHF20L1 and mono-methyl pRb is important for maintaining the integrity of a pRb-dependent G1-S-phase checkpoint. Our results highlight the distinct roles that methyl-lysine readers have in regulating the biological activity of pRb.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Lysine/metabolism , Retinoblastoma Protein/metabolism , Cell Cycle/physiology , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Genes, Tumor Suppressor , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , MCF-7 Cells , Methylation , Retinoblastoma Protein/genetics , Transfection , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
8.
Cell Rep ; 19(11): 2193-2201, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28614707

ABSTRACT

The retinoblastoma tumor suppressor protein pRb is a master regulator of cellular proliferation, principally through interaction with E2F and regulation of E2F target genes. Here, we describe the H1.2 linker histone as a major pRb interaction partner. We establish that H1.2 and pRb are found in a chromatin-bound complex on diverse E2F target genes. Interrogating the global influence of H1.2 on the genome-wide distribution of pRb indicated that the E2F target genes affected by H1.2 are functionally linked to cell-cycle control, consistent with the ability of H1.2 to hinder cell proliferation and the elevated levels of chromatin-bound H1-pRb complex, which occur in growth-arrested cells. Our results define a network of E2F target genes as susceptible to the regulatory influence of H1.2, where H1.2 augments global association of pRb with chromatin, enhances transcriptional repression by pRb, and facilitates pRb-dependent cell-cycle arrest.


Subject(s)
Chromatin/genetics , Genes, Tumor Suppressor/physiology , Histones/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma/genetics , Cell Cycle Checkpoints , Humans , Transfection
9.
Cell Chem Biol ; 24(3): 371-380, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28262558

ABSTRACT

Methylation of lysine residues on histone tail is a dynamic epigenetic modification that plays a key role in chromatin structure and gene regulation. Members of the KDM5 (also known as JARID1) sub-family are 2-oxoglutarate (2-OG) and Fe2+-dependent oxygenases acting as histone 3 lysine 4 trimethyl (H3K4me3) demethylases, regulating proliferation, stem cell self-renewal, and differentiation. Here we present the characterization of KDOAM-25, an inhibitor of KDM5 enzymes. KDOAM-25 shows biochemical half maximal inhibitory concentration values of <100 nM for KDM5A-D in vitro, high selectivity toward other 2-OG oxygenases sub-families, and no off-target activity on a panel of 55 receptors and enzymes. In human cell assay systems, KDOAM-25 has a half maximal effective concentration of ∼50 µM and good selectivity toward other demethylases. KDM5B is overexpressed in multiple myeloma and negatively correlated with the overall survival. Multiple myeloma MM1S cells treated with KDOAM-25 show increased global H3K4 methylation at transcriptional start sites and impaired proliferation.


Subject(s)
Glycine/analogs & derivatives , Histones/metabolism , Niacinamide/analogs & derivatives , Retinoblastoma-Binding Protein 2/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Glycine/chemistry , Glycine/metabolism , Glycine/pharmacology , HeLa Cells , Humans , Kaplan-Meier Estimate , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Methylation , Multiple Myeloma/metabolism , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Niacinamide/chemistry , Niacinamide/metabolism , Niacinamide/pharmacology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Retinoblastoma-Binding Protein 2/genetics , Transcription Initiation Site
10.
Nat Chem Biol ; 12(7): 539-45, 2016 07.
Article in English | MEDLINE | ID: mdl-27214403

ABSTRACT

Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe(2+)-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25-100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Multiple Myeloma/drug therapy , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Histone Demethylases/metabolism , Humans , Models, Molecular , Multiple Myeloma/pathology , Protein Conformation , Structure-Activity Relationship
11.
Sci Adv ; 2(2): e1501257, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26989780

ABSTRACT

Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to an acetylated domain in E2F-1, and PAD4 and BRD4 coexist with E2F-1 on cytokine gene promoters. Accordingly, the combined inhibition of PAD4 and BRD4 disrupts the chromatin-bound complex and suppresses cytokine gene expression. In the murine collagen-induced arthritis model, chromatin-bound E2F-1 in inflammatory cells and consequent cytokine expression are diminished upon small-molecule inhibition of PAD4 and BRD4, and the combined treatment is clinically efficacious in preventing disease progression. Our results shed light on a new transcription-based mechanism that mediates the inflammatory effect of PAD4 and establish the interplay between citrullination and acetylation in the control of E2F-1 as a regulatory interface for driving inflammatory gene expression.


Subject(s)
Citrulline/metabolism , E2F1 Transcription Factor/chemistry , E2F1 Transcription Factor/metabolism , Inflammation/metabolism , Acetylation , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Cell Cycle Proteins , Cell Line , Cytokines/genetics , E2F1 Transcription Factor/genetics , Gene Expression Regulation , HL-60 Cells , Humans , Hydrolases/antagonists & inhibitors , Hydrolases/genetics , Hydrolases/metabolism , Inflammation/genetics , Inflammation/immunology , Male , Mice , Mice, Inbred DBA , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , RNA, Small Interfering/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/metabolism
12.
Proc Natl Acad Sci U S A ; 111(31): 11341-6, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25049398

ABSTRACT

The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lysine/metabolism , Retinoblastoma Protein/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cellular Senescence , Chromatin/metabolism , DNA Repair , Humans , Methylation , Mice , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Structure, Tertiary , Retinoblastoma Protein/chemistry , Tumor Suppressor p53-Binding Protein 1
13.
Mol Cell ; 52(1): 37-51, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24076217

ABSTRACT

The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity.


Subject(s)
Apoptosis , Cell Proliferation , E2F1 Transcription Factor/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Amino Acid Motifs , Arginine , Cell Line, Tumor , Chromatin Assembly and Disassembly , Cyclin A/metabolism , DNA Damage , E2F1 Transcription Factor/genetics , Gene Expression Regulation , Humans , Methylation , Promoter Regions, Genetic , Protein Binding , Protein-Arginine N-Methyltransferases/genetics , RNA Interference , Repressor Proteins/genetics , Signal Transduction , Transcription, Genetic , Transfection
14.
EMBO Rep ; 13(9): 811-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22836579

ABSTRACT

The ubiquitin-like molecule NEDD8 modifies cullin-RING ubiquitin E3 ligases. NEDD8 has been shown to have a few additional substrates, but the extent to which this modification targets non-cullins and the functional significance of such modifications remain unclear. Here, we demonstrate that the cell-cycle-regulating transcription factor E2F-1 is a substrate for NEDD8 post-translational modification. NEDDylation results in decreased E2F-1 stability, lower transcriptional activity and slower cell growth. The lysine residues in E2F-1 targeted for NEDDylation can also be methylated, pointing to a possible interplay between these modifications. These results identify a new mode of E2F-1 regulation and highlight the emerging role of NEDD8 in regulating transcription factor stability and function.


Subject(s)
E2F1 Transcription Factor/metabolism , Transcription, Genetic , Ubiquitination , Ubiquitins/metabolism , Cell Line, Tumor , Cell Proliferation , E2F1 Transcription Factor/genetics , Humans , Lysine/metabolism , Methylation , NEDD8 Protein , Protein Stability , Ubiquitins/genetics
15.
Essays Biochem ; 52: 79-92, 2012.
Article in English | MEDLINE | ID: mdl-22708565

ABSTRACT

The p53 tumour suppressor protein functions as a guardian against genotoxic stress. This function is mediated in part by the transcriptional activation of genes involved in cell-cycle arrest, apoptosis, DNA repair and autophagy. The activity of p53 is regulated by a complex array of post-translational modifications, which function as a code to determine cellular responses to a given stress. In this chapter we highlight recent advances in our understanding of this code, with particular reference to lysine methylation, and discuss implications for future research.


Subject(s)
Lysine/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Methylation , Models, Biological
16.
EMBO J ; 31(7): 1785-97, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22327218

ABSTRACT

E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltransferase 5), and that arginine methylation is responsible for regulating its biochemical and functional properties, which impacts on E2F-1-dependent growth control. Thus, depleting PRMT5 causes increased E2F-1 protein levels, which coincides with decreased growth rate and associated apoptosis. Arginine methylation influences E2F-1 protein stability, and the enhanced transcription of a variety of downstream target genes reflects increased E2F-1 DNA-binding activity. Importantly, E2F-1 is methylated in tumour cells, and a reduced level of methylation is evident under DNA damage conditions that allow E2F-1 stabilization and give rise to apoptosis. Significantly, in a subgroup of colorectal cancer, high levels of PRMT5 frequently coincide with low levels of E2F-1 and reflect a poor clinical outcome. Our results establish that arginine methylation regulates the biological activity of E2F-1 activity, and raise the possibility that arginine methylation contributes to tumourigenesis by influencing the E2F pathway.


Subject(s)
Arginine/metabolism , Cell Transformation, Neoplastic/metabolism , E2F1 Transcription Factor/metabolism , Apoptosis , Cell Line, Tumor , Gene Expression Regulation , Humans , Methylation , Protein Methyltransferases/metabolism , Protein Stability , Protein-Arginine N-Methyltransferases
17.
J Neurochem ; 118(4): 596-610, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21668450

ABSTRACT

Abnormal regulation of brain glycogen metabolism is believed to underlie insulin-induced hypoglycaemia, which may be serious or fatal in diabetic patients on insulin therapy. A key regulator of glycogen levels is glycogen targeted protein phosphatase 1 (PP1), which dephosphorylates and activates glycogen synthase (GS) leading to an increase in glycogen synthesis. In this study, we show that the gene PPP1R3F expresses a glycogen-binding protein (R3F) of 82.8 kDa, present at the high levels in rodent brain. R3F binds to PP1 through a classical 'RVxF' binding motif and substitution of Phe39 for Ala in this motif abrogates PP1 binding. A hydrophobic domain at the carboxy-terminus of R3F has similarities to the putative membrane binding domain near the carboxy-terminus of striated muscle glycogen targeting subunit G(M)/R(GL), and R3F is shown to bind not only to glycogen but also to membranes. GS interacts with PP1-R3F and is hyperphosphorylated at glycogen synthase kinase-3 sites (Ser640 and Ser644) when bound to R3F(Phe39Ala). Deprivation of glucose or stimulation with adenosine or noradrenaline leads to an increased phosphorylation of PP1-R3F bound GS at Ser640 and Ser644 curtailing glycogen synthesis and facilitating glycogen degradation to provide glucose in astrocytoma cells. Adenosine stimulation also modulates phosphorylation of R3F at Ser14/Ser18.


Subject(s)
Astrocytoma/enzymology , Brain Neoplasms/enzymology , Carrier Proteins/physiology , Extracellular Space/physiology , Glucose/pharmacology , Glycogen Synthase/biosynthesis , Phosphoprotein Phosphatases/physiology , Protein Phosphatase 1/physiology , Signal Transduction/drug effects , Adenosine/pharmacology , Adrenergic alpha-Agonists/pharmacology , Amino Acid Sequence , Animals , Astrocytoma/genetics , Brain/drug effects , Brain/enzymology , Brain Neoplasms/genetics , Carrier Proteins/genetics , Cell Line, Tumor , DNA/biosynthesis , DNA/genetics , Glycogen/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutagenesis , Norepinephrine/pharmacology , Phosphoprotein Phosphatases/genetics , Phosphorylation , Protein Phosphatase 1/genetics , RNA/biosynthesis , RNA/genetics , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
18.
EMBO J ; 30(2): 317-27, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21119616

ABSTRACT

As a critical target for cyclin-dependent kinases (Cdks), the retinoblastoma tumour suppressor protein (pRb) controls early cell cycle progression. We report here a new type of regulation that influences Cdk recognition and phosphorylation of substrate proteins, mediated through the targeted methylation of a critical lysine residue in the Cdk substrate recognition site. In pRb, lysine (K) 810 represents the essential and conserved basic residue (SPXK) required for cyclin/Cdk recognition and phosphorylation. Methylation of K810 by the methyltransferase Set7/9 impedes binding of Cdk and thereby prevents subsequent phosphorylation of the associated serine (S) residue, retaining pRb in the hypophosphorylated growth-suppressing state. Methylation of K810 is under DNA damage control, and methylated K810 impacts on phosphorylation at sites throughout the pRb protein. Set7/9 is required for efficient cell cycle arrest, and significantly, a mutant derivative of pRb that cannot be methylated at K810 exhibits compromised cell cycle arrest. Thus, the regulation of phosphorylation by Cdks reflects the combined interplay with methylation events, and more generally the targeted methylation of a lysine residue within a Cdk-consensus site in pRb represents an important point of control in cell cycle progression.


Subject(s)
Cell Cycle/physiology , Cyclin-Dependent Kinases/metabolism , Lysine/metabolism , Models, Molecular , Retinoblastoma Protein/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Flow Cytometry , Humans , Immunoblotting , Immunoprecipitation , Luciferases , Mass Spectrometry , Methylation , Phosphorylation , Protein Binding
19.
Nature ; 468(7327): 1067-73, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-20871596

ABSTRACT

Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.


Subject(s)
Azirines/pharmacology , Dihydropyridines/pharmacology , Models, Molecular , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Azirines/chemical synthesis , Azirines/chemistry , Binding Sites , Carcinoma, Squamous Cell/physiopathology , Cell Cycle Proteins , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin/metabolism , Dihydropyridines/chemical synthesis , Dihydropyridines/chemistry , Female , Humans , Mice , Mice, Nude , Molecular Sequence Data , Protein Binding/drug effects , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Sequence Alignment , Skin Neoplasms/physiopathology , Stereoisomerism
20.
FEBS Lett ; 581(24): 4749-53, 2007 Oct 02.
Article in English | MEDLINE | ID: mdl-17870073

ABSTRACT

The inhibition of hepatic glycogen-associated protein phosphatase-1 (PP1-G(L)) by glycogen phosphorylase a prevents the dephosphorylation and activation of glycogen synthase, suppressing glycogen synthesis when glycogenolysis is activated. Here, we show that a peptide ((280)LGPYY(284)) comprising the last five amino acids of G(L) retains high-affinity interaction with phosphorylase a and that the two tyrosines play crucial roles. Tyr284 deletion abolishes binding of phosphorylase a to G(L) and replacement by phenylalanine is insufficient to restore high-affinity binding. We show that a phosphorylase inhibitor blocks the interaction of phosphorylase a with the G(L) C-terminus, suggesting that the latter interaction could be targeted to develop an anti-diabetic drug.


Subject(s)
Glycogen Phosphorylase, Liver Form/metabolism , Indoles/pharmacology , Phenylbutyrates/pharmacology , Tyrosine/metabolism , Amino Acid Sequence , Animals , Calorimetry , Glycogen Phosphorylase, Liver Form/chemistry , Glycogen Phosphorylase, Liver Form/genetics , Humans , Mice , Molecular Sequence Data , Mutation/genetics , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Rabbits , Rats , Thermodynamics , Titrimetry , Tyrosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...