Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lung Cancer ; 160: 99-110, 2021 10.
Article in English | MEDLINE | ID: mdl-34482104

ABSTRACT

OBJECTIVES: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models. METHODS: Human MPM cell lines MSTO-211H and NCI-H2052 were treated with TTFields to determine the frequency that elicits maximal cytotoxicity. The effect of TTFields on DNA damage and repair, and the cytotoxic effect of TTFields in combination with cisplatin and/or pemetrexed were examined. Efficacy of TTFields concomitant with cisplatin and pemetrexed was evaluated in orthotopic IL-45 and subcutaneous RN5 murine models. RESULTS: TTFields at a frequency of 150 kHz demonstrated the highest cytotoxicity to MPM cells. Application of 150 kHz TTFields resulted in increased formation of DNA double strand breaks, elevated expression of DNA damage induced cell cycle arrest proteins, and reduced expression of Fanconi Anemia (FA)-BRCA DNA repair pathway proteins. Co-treatment of TTFields with cisplatin or pemetrexed significantly increased treatment efficacy versus each modality alone, with additivity and synergy exhibited by the TTFields-pemetrexed and TTFields-cisplatin combinations, respectively. In animal models, tumor volume was significantly lower for the TTFields-cisplatin-pemetrexed combination compared to control, accompanied by increased DNA damage within the tumor. CONCLUSION: This research demonstrated that the efficacy of TTFields for the treatment of MPM is associated with reduced expression of FA-BRCA pathway proteins and increased DNA damage. This mechanism of action is consistent with the observed synergism for TTFields-cisplatin vs additivity for TTFields-pemetrexed, as cisplatin-induced DNA damage is repaired via the FA-BRCA pathway.


Subject(s)
Fanconi Anemia , Lung Neoplasms , Mesothelioma, Malignant , Animals , Cisplatin , Humans , Lung Neoplasms/drug therapy , Mice , Pemetrexed
2.
Front Oncol ; 11: 670809, 2021.
Article in English | MEDLINE | ID: mdl-34249709

ABSTRACT

BACKGROUND: Tumor Treating Fields (TTFields) therapy is a non-invasive, loco-regional, anti-mitotic treatment modality that targets rapidly dividing cancerous cells, utilizing low intensity, alternating electric fields at cancer-cell-type specific frequencies. TTFields therapy is approved for the treatment of newly diagnosed and recurrent glioblastoma (GBM) in the US, Europe, Israel, Japan, and China. The favorable safety profile of TTFields in patients with GBM is partially attributed to the low rate of mitotic events in normal, quiescent brain cells. However, specific safety evaluations are warranted at locations with known high rates of cellular proliferation, such as the torso, which is a primary site of several of the most aggressive malignant tumors. METHODS: The safety of delivering TTFields to the torso of healthy rats at 150 or 200 kHz, which were previously identified as optimal frequencies for treating multiple torso cancers, was investigated. Throughout 2 weeks of TTFields application, animals underwent daily clinical examinations, and at treatment cessation blood samples and internal organs were examined. Computer simulations were performed to verify that the targeted internal organs of the torso were receiving TTFields at therapeutic intensities (≥ 1 V/cm root mean square, RMS). RESULTS: No treatment-related mortality was observed. Furthermore, no significant differences were observed between the TTFields-treated and control animals for all examined safety parameters: activity level, food and water intake, stools, motor neurological status, respiration, weight, complete blood count, blood biochemistry, and pathological findings of internal organs. TTFields intensities of 1 to 2.5 V/cm RMS were confirmed for internal organs within the target region. CONCLUSIONS: This research demonstrates the safety of therapeutic level TTFields at frequencies of 150 and 200 kHz when applied as monotherapy to the torso of healthy rats.

3.
Cancer Immunol Immunother ; 69(7): 1191-1204, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32144446

ABSTRACT

Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Hepatocellular/therapy , Carcinoma, Lewis Lung/therapy , Electric Stimulation Therapy/methods , Immunogenic Cell Death , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/pathology , Cell Proliferation , Combined Modality Therapy , Female , Humans , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Cell Death Dis ; 9(11): 1074, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341282

ABSTRACT

Tumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells. We found that autophagy is upregulated in glioma cells treated with TTFields as demonstrated by immunoblot analysis of the lipidated microtubule-associated protein light chain 3 (LC3-II). Fluorescence and transmission electron microscopy demonstrated the presence of LC3 puncta and typical autophagosome-like structures in TTFields-treated cells. Utilizing time-lapse microscopy, we found that the significant increase in the formation of LC3 puncta was specific to cells that divided during TTFields application. Evaluation of selected cell stress parameters revealed an increase in the expression of the endoplasmic reticulum (ER) stress marker GRP78 and decreased intracellular ATP levels, both of which are indicative of increased proteotoxic stress. Pathway analysis demonstrated that TTFields-induced upregulation of autophagy is dependent on AMP-activated protein kinase (AMPK) activation. Depletion of AMPK or autophagy-related protein 7 (ATG7) inhibited the upregulation of autophagy in response to TTFields, as well as sensitized cells to the treatment, suggesting that cancer cells utilize autophagy as a resistance mechanism to TTFields. Combining TTFields with the autophagy inhibitor chloroquine (CQ) resulted in a significant dose-dependent reduction in cell growth compared with either TTFields or CQ alone. These results suggest that dividing cells upregulate autophagy in response to aneuploidy and ER stress induced by TTFields, and that AMPK serves as a key regulator of this process.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy , Brain Neoplasms/pathology , Electric Stimulation/methods , Glioblastoma/pathology , Up-Regulation , Adenosine Triphosphate/metabolism , Aneuploidy , Animals , Autophagosomes/metabolism , Autophagy-Related Protein 7/antagonists & inhibitors , Brain Neoplasms/therapy , Cell Line, Tumor , Cell Survival , Electric Stimulation Therapy , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Glioblastoma/therapy , Heat-Shock Proteins/metabolism , Humans , Lysosomes/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitosis , Rats , Vascular Endothelial Growth Factor A
5.
Radiat Oncol ; 12(1): 206, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29284495

ABSTRACT

BACKGROUND: Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells. We also examined the effect of TTFields transducer arrays on RT distribution in a phantom model and the impact on rat skin toxicity. METHODS: The efficacy of TTFields application after induction of DNA damage by RT or bleomycin was tested in U-118 MG and LN-18 glioma cells. The alkaline comet assay was used to measure repair of DNA lesions. Repair of DNA double strand breaks (DSBs) were assessed by analyzing γH2AX or Rad51 foci. DNA damage and repair signaled by the activation pattern of phospho-ATM (pS1981) and phospho-DNA-PKcs (pS2056) was evaluated by immunoblotting. The absorption of the RT energy by transducer arrays was measured by applying RT through arrays placed on a solid-state phantom. Skin toxicities were tested in rats irradiated daily through the arrays with 2Gy (total dose of 20Gy). RESULTS: TTFields synergistically enhanced the efficacy of RT in glioma cells. Application of TTFields to irradiated cells impaired repair of irradiation- or chemically-induced DNA damage, possibly by blocking homologous recombination repair. Transducer arrays presence caused a minor reduction in RT intensity at 20 mm and 60 mm below the arrays, but led to a significant increase in RT dosage at the phantom surface jeopardizing the "skin sparing effect". Nevertheless, transducer arrays placed on the rat skin during RT did not lead to additional skin reactions. CONCLUSIONS: Administration of TTFields after RT increases glioma cells treatment efficacy possibly by inhibition of DNA damage repair. These preclinical results support the application of TTFields therapy immediately after RT as a viable regimen to enhance RT outcome. Phantom measurements and animal models imply that it may be possible to leave the transducer arrays in place during RT without increasing skin toxicities.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Electric Stimulation Therapy , Glioma/radiotherapy , Phantoms, Imaging , Skin Diseases/prevention & control , Animals , Glioma/genetics , Glioma/pathology , Humans , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured
6.
J Vis Exp ; (123)2017 05 04.
Article in English | MEDLINE | ID: mdl-28518093

ABSTRACT

Tumor Treating Fields (TTFields) are an effective treatment modality delivered via the continuous, noninvasive application of low-intensity (1-3 V/cm), alternating electric fields in the frequency range of several hundred kHz. The study of TTFields in tissue culture is carried out using the TTFields in vitro application system, which allows for the application of electric fields of varying frequencies and intensities to ceramic Petri dishes with a high dielectric constant (Ɛ > 5,000). Cancerous cell lines plated on coverslips at the bottom of the ceramic Petri dishes are subjected to TTFields delivered in two orthogonal directions at various frequencies to facilitate treatment outcome tests, such as cell counts and clonogenic assays. The results presented in this report demonstrate that the optimal frequency of the TTFields with respect to both cell counts and clonogenic assays is 200 kHz for both ovarian and glioma cells.


Subject(s)
Colony-Forming Units Assay/methods , Electric Stimulation Therapy , Electricity , Glioma/therapy , Ovarian Neoplasms/therapy , Antineoplastic Protocols , Cell Line, Tumor , Female , Humans , Treatment Outcome
7.
Int J Cancer ; 139(12): 2850-2858, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27561100

ABSTRACT

Long-term survival rates for advanced ovarian cancer patients have not changed appreciably over the past four decades; therefore, development of new, effective treatment modalities remains a high priority. Tumor Treating Fields (TTFields), a clinically active anticancer modality utilize low-intensity, intermediate frequency, alternating electric fields. The goal of this study was to evaluate the efficacy of combining TTFields with paclitaxel against ovarian cancer cells in vitro and in vivo. In vitro application of TTFields on human ovarian cancer cell lines led to a significant reduction in cell counts as compared to untreated cells. The effect was found to be frequency and intensity dependent. Further reduction in the number of viable cells was achieved when TTFields treatment was combined with paclitaxel. The in vivo effect of the combined treatment was tested in mice orthotopically implanted with MOSE-LTICv cells. In this model, combined treatment led to a significant reduction in tumor luminescence and in tumor weight as compared to untreated mice. The feasibility of effective local delivery of TTFields to the human abdomen was examined using finite element mesh simulations performed using the Sim4life software. These simulations demonstrated that electric fields intensities inside and in the vicinity of the ovaries of a realistic human computational phantom are about 1 and 2 V/cm pk-pk, respectively, which is within the range of intensities required for TTFields effect. These results suggest that prospective clinical investigation of the combination of TTFields and paclitaxel is warranted.


Subject(s)
Antineoplastic Agents/pharmacology , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/therapy , Treatment Outcome , Xenograft Model Antitumor Assays
8.
Sci Rep ; 5: 18046, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26658786

ABSTRACT

Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.


Subject(s)
Chromosome Segregation/physiology , Mitosis/physiology , Neoplasms/pathology , Spindle Apparatus/pathology , Animals , Apoptosis/physiology , Cell Line, Tumor , Cell Survival/physiology , Electricity , Humans , MCF-7 Cells , Microtubules/metabolism , Microtubules/pathology , Neoplasms/metabolism , Rats , Rats, Inbred F344 , Tubulin/metabolism
9.
Pancreatology ; 14(1): 54-63, 2014.
Article in English | MEDLINE | ID: mdl-24555979

ABSTRACT

OBJECTIVES: Tumor Treating Fields (TTFields) are a non-invasive cancer treatment modality approved for the treatment of patients with recurrent glioblastoma. The present study determined the efficacy and mechanism of action of TTFields in preclinical models of pancreatic cancer. METHODS: The effect of TTFields in vitro was assessed using cell counts, clonogenic assays, cell cycle analysis and analysis of mitotic figures. The effect in vivo effect was studied in the PC1-0 hamster pancreatic cancer model. RESULTS: Application of TTFields in vitro showed a significant decrease in cell count, an increase in cell volume and reduced clonogenicity. Further analysis demonstrated significant increase in the number of abnormal mitotic figures, as well as a decrease in G2-M cell population. In hamsters with orthotopic pancreatic tumors, TTFields significantly reduced tumor volume accompanied by an increase in the frequency of abnormal mitotic events. TTFields efficacy was enhanced both in vitro and in vivo when combined with chemotherapy. CONCLUSIONS: These results provide the first evidence that TTFields serve as an effective antimitotic treatment in preclinical pancreatic cancer models and have a long term negative effect on cancer cell survival. These results make TTFields an attractive candidate for testing in the treatment of patients with pancreatic cancer.


Subject(s)
Mitosis/drug effects , Pancreatic Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Size/drug effects , Combined Modality Therapy , Cricetinae , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Electricity , Humans , Male , Mesocricetus , Pancreatic Neoplasms/drug therapy , Treatment Outcome , Tumor Stem Cell Assay , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...