Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Immunopathol Pharmacol ; 38: 3946320241249429, 2024.
Article in English | MEDLINE | ID: mdl-38721971

ABSTRACT

OBJECTIVE: This study investigated the raft-forming suspension of famotidine as an anti-reflux formulation to improve the oral bioavailability of narrow absorption window drugs by enhancing gastric residence time (GRT) and preventing gastro-esophageal reflux disease (GERD). METHOD: Various combinations of raft-forming agents, such as Tragacanth gum (TG), guar gum (GG), and xanthan gum (XG), were evaluated alongside sodium alginate (SA) to develop an effective raft. Preformulation studies and preliminary screening were conducted to identify the most suitable raft-forming agent, and GG was chosen due to its mucilaginous properties. The formulation was optimized using a 32 full factorial design, with the quantities of GG and SA as independent factors and apparent viscosity and in-vitro drug release (%) as dependent factors. The in vivo floating behavior study was performed for optimized and stabilized formulation. RESULTS: Among the tested batches, F6 was selected as the optimized formulation. It exhibited desirable characteristics such as adequate raft weight for extended floating in gastric fluid, improved apparent viscosity, and a significant percentage of drug release at 12 h. A mathematical model was applied to the in-vitro data to gain insights into the drug release mechanism of the formulation. The stability of the suspension was assessed under accelerated conditions, and it demonstrated satisfactory stability. The formulation remains floating in the Rabbit stomach for more than 12 h. CONCLUSION: It concludes that the developed formulation has enhanced bioavailability in the combination of GG and SA. The floating layer of the raft prevents acid reflux, and the famotidine is retained for an extended period of time in the gastric region, preventing excess acid secretion. The developed formulations are effective for stomach ulcers and GERD, with the effect of reducing acid secretion by H2 receptor antagonists.


Subject(s)
Drug Delivery Systems , Famotidine , Galactans , Famotidine/administration & dosage , Famotidine/pharmacokinetics , Animals , Drug Delivery Systems/methods , Drug Liberation , Alginates , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/metabolism , Biological Availability , Mannans/administration & dosage , Plant Gums , Viscosity , Male , Rabbits , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Polysaccharides, Bacterial , Drug Stability , Administration, Oral
2.
Heliyon ; 10(2): e24301, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293518

ABSTRACT

This research paper reports enhancing Acyclovir's gastric residence time by implementing a raft-forming drug delivery system. Because acyclovir is a narrow absorption window drug, it has a poor bioavailability of 10-20 % and a short half-life (t1/2) of 2.5 h. The guar gum and GMS-based floating raft formulation retain the drug in the stomach for an extended period by enhancing GRT. The Box-Behnken design is used to optimize the amount of guar gum, glyceryl monostearate, and calcium carbonate and to study how they affect the in vitro gelation time, viscosity, and in vitro drug release. The ratio of drug and excipients in guar gum (1:0.5), GMS (1:1.25) based FRF suspension containing sodium citrate (0.25 %), carbopol (0.1 %), and calcium carbonate (1:1.5). Seventeen runs were developed through the Box-Behnken design to study all the optimal interactions between variables and responses through a polynomial equation. The optimized formulation is then characterized using various physicochemical tests such as rheological analysis, in vitro drug release, kinetic drug release, and in vitro permeation studies. The in vitro gelation time, viscosity, and in vitro drug release time of optimized FRF are 12 s, 1090 cps, and 88 % at 24 h, respectively. The flux and permeability coefficient of the optimized batch have a higher value indicating higher permeability of acyclovir. The FRF follows non-fickian diffusion as a drug release mechanism. The results show that the raft-forming drug delivery system significantly enhances the absorption of Acyclovir by prolonging drug release and also improving its gastric residence time in the stomach. This research contributes to the field of drug delivery systems by providing a novel approach for improving the therapeutic efficacy of acyclovir and potentially other drugs with similar characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...