Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Bioallied Sci ; 16(Suppl 2): S1330-S1334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882777

ABSTRACT

A new area of nanotechnology, "green synthesis" studies nanomaterials utilizing natural biomaterials like plants, flowers, and microbesGreen nanoparticle synthesis offers various benefits, such as cost efficiency, pollution reduction, and environmental compatibility. Among nanoparticles, metallic variants have garnered the greatest attention due to their unique physical and chemical attributes. Strontium (Sr), known for promoting growth, aiding bone regeneration, and stimulating calcium signaling, holds significance in the medical domain. Consequently, Sr-based nanoparticles have gained interest in medical and dental applications due to their resemblance to calcium properties. Researchers worldwide are drawn to Mimosa pudica because of its pharmacological properties, including its ability to treat wounds, and its anti-diabetic, anti-toxin, anti-hepatotoxin, and antioxidant effects. Mimosa pudica mediated strontium nanoparticles' antioxidant activity was tested against FRAP assay, H2O2 assay, and DPPH assay with ascorbic acid as standard, where in all three assays, increasing concentration of Mimosa pudica mediated strontium nanoparticles exhibited increasing antioxidant activity which was similar to the ascorbic acid. Hence, this can be used as a novel antioxidant agent in the near future.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1360-S1364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882789

ABSTRACT

Andrographis Paniculata also known as the "King of Bitters" is a herbal medicine of the Acanthaceae family which is native to India and Sri Lanka. Andrographis Paniculata is a very useful medicinal plant as it has antioxidant, antidiabetic, antipyretic, anticancer properties. The main antibacterial activity of Andrographis Paniculata is due to the presence of andrographolide and arabinogalactan proteins. The medicinal properties of rose are mostly due to their abundance in phenolic compounds. They have many pharmacological properties like antibacterial, antioxidant, thrombolytic, and anticancer properties. The hips of the rose plant have Vitamin C in a concentration that is three times more than a citrus fruit that can be used in the treatment of a flu or a cold. Mueller-Hinton agar was utilized for this activity to determine the zone of inhibition. The plant extracts with different concentrations were loaded, and the plates were incubated for 24 hours at 37°C. After the incubation time, the zone of inhibition was measured. The results of this study are significant because they demonstrate the antibacterial activity of Andrographis Paniculata and Rosa against three bacterial pathogens. This suggests that the formulation of Andrographis Paniculata and Rosa has potential as a natural antibacterial agent. Further studies are needed to explore the mechanism of action and potential applications of this formulation. In conclusion, the study shows that the formulation of Andrographis Paniculata and Rosa has significant antibacterial activity against Klebsiella, Escherichia Coli, and Enterococcus Faecalis. This suggests that the formulation of Andrographis Paniculata and Rosa has potential as a natural antibacterial agent that could be further explored for its potential use in the treatment of bacterial infections.

3.
Cureus ; 16(2): e53489, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38440044

ABSTRACT

Aim This study aimed to compare the antidiabetic effect of metal oxide nanoparticles (CuONPs and ZnONPs) prepared using lemongrass and mint herbal formulations. Introduction The study explores green-synthesized nanoparticles for potential applications in diabetes management, emphasizing sustainable synthesis methods, particularly zinc oxide nanoparticles (ZnONPs) and copper oxide nanoparticles (CuONPs) produced from lemongrass and mint herbal formulations. The study was prompted by the increasing importance of innovative therapeutic strategies, responding to emerging health challenges, and leveraging advancements in nanotechnology and eco-friendly practices to explore the potential of green-synthesized nanoparticles in diabetes management. Methods The methods involve herbal formulation preparation, CuONPs and ZnONPs synthesis, and UV-visible spectrophotometry for characterization. In vitro antidiabetic activity is assessed through α-amylase and ß-glucosidase enzyme assays using varied nanoparticle concentrations (10-50 µL). Results Visual observations confirm successful synthesis, with distinct color changes observed in both CuONPs and ZnONPs after 24 hours. UV-visible spectrophotometry reveals absorption peaks at 440 nm and 380 nm for CuONPs and ZnONPs, respectively. In the α-amylase assay, both nanoparticles exhibit concentration-dependent inhibition, with CuONPs ranging from 40% to 77% and ZnONPs ranging from 36% to 80%. The ß-glucosidase assay demonstrates similar concentration-dependent inhibition patterns, highlighting significant differences. Conclusion The study concludes that CuONPs and ZnONPs synthesis using lemongrass and mint herbal formulations show concentration-dependent antidiabetic activity. The comparative analysis underscores the need for tailored approaches based on nanoparticle composition. These findings contribute valuable insights into the therapeutic potential of green-synthesized nanoparticles, paving the way for future nanomedicine research and development in diabetes management.

4.
Cureus ; 15(12): e50142, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38186403

ABSTRACT

INTRODUCTION: Copper oxide nanoparticles (CuONPs) have emerged as potential antibacterial agents. In this study, we aimed to synthesize CuONPs using Terminalia chebula (T. chebula) dried fruit extract and evaluate their antibacterial activity against specific wound pathogens. Our primary objective was to comprehensively characterize dried T. chebula fruit (TCF)-CuONPs and assess their antibacterial efficacy. METHODS: CuONPs were synthesized through a green synthesis approach employing T. chebula dried fruit extract. Structural and compositional characterization involved UV-visible spectroscopy, scanning electron microscopy (SEM), elemental dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). The antibacterial activity of CuONPs was assessed against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli through various assays, including agar well diffusion, time-kill curve, protein leakage analysis, and antibiofilm assays. RESULTS: Characterization revealed a distinct absorption peak at 440 nm in UV-visible spectroscopy, spherical morphology under SEM, and the presence of copper in EDX analysis. TEM revealed nanoparticle dimensions of approximately 10-12 nm. In antibacterial assays, TCF-CuONPs displayed significant efficacy, with Pseudomonas aeruginosa exhibiting heightened susceptibility. CONCLUSION: This study successfully synthesized eco-friendly copper oxide nanoparticles using T. chebula dried fruit extract and thoroughly characterized their structural and compositional attributes. CuONPs exhibited substantial antibacterial potency against specific wound pathogens, indicating their potential in wound management applications. These findings contribute to the development of sustainable antibacterial solutions with implications for healthcare and environmental sustainability. Further research can delve into the mechanisms and broader applications of CuONPs based on the specific experimental outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...