Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881735

ABSTRACT

The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.


Subject(s)
Gene Regulatory Networks , Plants/metabolism , RNA, Plant/metabolism , Sequence Analysis, RNA/methods , Transcriptome , Chromatin Immunoprecipitation , Gene Library , Plants/genetics , RNA, Plant/chemistry
2.
Plant Cell Rep ; 37(8): 1127-1143, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29789886

ABSTRACT

KEY MESSAGE: TAAAAT and a novel motif, GCTTCA found in the oil palm stearoyl-ACP desaturase (SAD1) promoter are involved in regulating mesocarp-specific expression. Two key fatty acid biosynthetic genes, stearoyl-ACP desaturase (SAD1), and acyl-carrier protein (ACP3) in Elaeis guineensis (oil palm) showed high level of expression during the period of oil synthesis in the mesocarp [12-19 weeks after anthesis (w.a.a.)] and kernel (12-15 w.a.a.). Both genes are expressed in spear leaves at much lower levels and the expression increased by 1.5-fold to 2.5-fold following treatments with ethylene and abscisic acid (ABA). Both SAD1 and ACP3 promoters contain phytohormone-responsive, light-responsive, abiotic factors/wounding-responsive, endosperm specificity and fruit maturation/ripening regulatory motifs. The activities of the full length and six 5' deletion fragments of the SAD1 promoter were analyzed in transiently transformed oil palm tissues by quantitative ß-glucuronidase (GUS) fluorometric assay. The highest SAD1 promoter activity was observed in the mesocarp followed by kernel and the least in the leaves. GUS activity in the D3 deletion construct (- 486 to + 108) was the highest, while the D2 (- 535 to + 108) gave the lowest suggesting the presence of negative cis-acting regulatory element(s) in the deleted - 535 to - 486 (49 bp). It was found that the 49-bp region binds to the nuclear protein extract from mesocarp but not from leaves in electrophoretic mobility shift assay (EMSA). Further fine-tuned analysis of this 49-bp region using truncated DNA led to the identification of GCTTCA as a novel motif in the SAD1 promoter. Interestingly, another known fruit ripening-related motif, LECPLEACS2 (TAAAAT) was found to be required for effective binding of the novel motif to the mesocarp nuclear protein extract.


Subject(s)
Arecaceae/enzymology , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Amino Acid Motifs , Arecaceae/metabolism , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...