Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hyg Environ Health ; 260: 114392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788338

ABSTRACT

Shared sanitation facilities are not considered a type of basic sanitation by the WHO/UNICEF Joint Monitoring Programme (JMP), though they may be the only alternative to open defecation in urban informal settlements. Additionally, JMP indicators for sanitation do not cover aspects related to the quality of shared sanitation, such as those outlined in the Human Right to Water and Sanitation (HRTWS) framework. Data on the prevalence of shared sanitation within informal settlement areas is limited, and there is a need to understand user preferences, experiences, and barriers to the use of shared sanitation to inform effective policy and practice. This systematic review aims to summarize the prevalence and number of households sharing sanitation in informal settlements globally, as well as user experiences and barriers to successful implementation of shared sanitation. We included studies available in English and published after January 1, 2000. We retrieved 4741 articles from seven databases and included a total of 167 relevant publications. Among included studies, 54 reported the prevalence of shared sanitation in informal settlements, and 138 studies reported on user perceptions and experiences related to shared sanitation quality. A meta-analysis of studies reporting the prevalence of shared sanitation in informal settlements globally revealed an estimated overall prevalence of 67% [95% CI: 61%-73%]. Commonly reported user preferences included cleanliness to promote continued use of shared facilities, privacy with a lockable door, facilities for menstrual hygiene management, safety and protection against violence, 24/7 access, proper lighting, and shared responsibility for facility management - which align with the HRTWS framework and represent barriers to shared sanitation use. Based on the findings of this review, we recommend including the number of households or people sharing a sanitation facility in monitoring of shared sanitation quality, locating sanitation facilities within compounds, where applicable, and promoting safety, dignity, and privacy of all users in the development of shared sanitation quality indicators.


Subject(s)
Sanitation , Humans , Prevalence
2.
J Environ Manage ; 357: 120736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574706

ABSTRACT

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Biofuels/analysis , Sanitation , Soil/chemistry , Methane/analysis , Nitrous Oxide/metabolism , Greenhouse Effect
3.
PLoS Negl Trop Dis ; 17(8): e0011496, 2023 08.
Article in English | MEDLINE | ID: mdl-37561673

ABSTRACT

Researchers have raised the possibility that soil-transmitted helminth (STH) infections might modify the host's immune response against other systemic infections. STH infections can alter the immune response towards type 2 immunity that could then affect the likelihood and severity of other illnesses. However, the importance of co-infections is not completely understood, and the impact and direction of their effects vary considerably by infection. This review synthesizes evidence regarding the relevance of STH co-infections, the potential mechanisms that explain their effects, and how they might affect control and elimination efforts. According to the literature reviewed, there are both positive and negative effects associated with STH infections on other diseases such as malaria, human immunodeficiency virus (HIV), tuberculosis, gestational anemia, pediatric anemia, neglected tropical diseases (NTDs) like lymphatic filariasis, onchocerciasis, schistosomiasis, and trachoma, as well as Coronavirus Disease 2019 (COVID-19) and human papillomavirus (HPV). Studies typically describe how STHs can affect the immune system and promote increased susceptibility, survival, and persistence of the infection in the host by causing a TH2-dominated immune response. The co-infection of STH with other diseases has important implications for the development of treatment and control strategies. Eliminating parasites from a human host can be more challenging because the TH2-dominated immune response induced by STH infection can suppress the TH1 immune response required to control other infections, resulting in an increased pathogen load and more severe disease. Preventive chemotherapy and treatment are currently the most common approaches used for the control of STH infections, but these approaches alone may not be adequate to achieve elimination goals. Based on the conclusions drawn from this review, integrated approaches that combine drug administration with water, sanitation and hygiene (WASH) interventions, hygiene education, community engagement, and vaccines are most likely to succeed in interrupting the transmission of STH co-infections. Gaining a better understanding of the behavior and relevance of STH co-infections in the context of elimination efforts is an important intermediate step toward reducing the associated burden of disease.


Subject(s)
COVID-19 , Coinfection , Helminthiasis , Helminths , Animals , Child , Humans , Soil/parasitology , Helminths/physiology , Helminthiasis/epidemiology , Helminthiasis/prevention & control , Helminthiasis/parasitology , Prevalence
4.
Article in English | MEDLINE | ID: mdl-36768034

ABSTRACT

The study investigated the effect of turning frequency on survival of fecal indicator pathogens (E. coli, Enterococcus spp., Salmonella spp. and helminth eggs) during fecal sludge (FS) co-composting with sawdust. Dewatered FS was mixed with sawdust and composted on a pilot scale using different turning frequencies-i.e., 3 days (3TF), 7 days (7TF), and 14 days (14TF). Composting piles were monitored weekly for survival of fecal indicator microorganisms and evolution of selected physical and chemical characteristics for 14 weeks. Our results show that turning frequency has a statistically significant (p < 0.05) effect on pathogen inactivation in FS compost. The 3TF piles exhibited shorter pathogen inactivation periods (8 weeks) than 7TF and 14TF piles (10 weeks). Temperature-time was found to be the major factor responsible for the survival of pathogens in FS composting piles, followed by indigenous microbial activities and toxic by-products (monitored as NH4+-N). Our study findings suggest that even at low composting temperatures, the high turning frequency can enhance pathogen inactivation. This is a significant finding for composting activities in some rural areas where suitable organic solid waste for co-composting with FS to attain the recommended high thermophilic conditions could be greatly lacking.


Subject(s)
Composting , Sewage/chemistry , Escherichia coli , Feces , Salmonella , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...