Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15156, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956292

ABSTRACT

The 2,4-toluenediamine (TDA) is one of the most important chemicals in the polyurethane industry, produced by the catalytic hydrogenation of 2,4-dinitrotoluene (DNT). The development of novel catalysts that can be easily recovered from the reaction mixture is of paramount importance. In our work, a NiFe2O4/N-BCNT supported magnetic catalyst was prepared by a modified coprecipitation method. The catalyst support alone also showed activity in the synthesis of TDA. Platinum nanoparticles were deposited on the catalyst support surface by a fast, relatively simple, and efficient sonochemical method, resulting in a readily applicable catalytically active system. The prepared catalyst exhibited high activity in hydrogenation tests, which was proved by the exceptionally high DNT conversion (100% for 120 min at 333 K) and TDA yield (99%). Furthermore, the magnetic catalyst can be easily recovered from the reaction medium by the action of an external magnetic field, which can greatly reduce catalyst loss during separation.

2.
Sci Rep ; 14(1): 4193, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378814

ABSTRACT

Toluene diamine (TDA) is a major raw material in the polyurethane industry and thus, its production is highly important. TDA is obtained through the catalytic hydrogenation of 2,4-dinitrotoluene (2,4-DNT). In this study a special hydrogenation catalyst has been developed by decomposition cobalt ferrite nanoparticles onto a natural clay-oxide nanocomposite (bentonite) surface using a microwave-assisted solvothermal method. The catalyst particles were examined by TEM and X-ray diffraction. The palladium immobilized on the bentonite crystal surface was identified using an XRD and HRTEM device. The obtained catalyst possesses the advantageous property of being easily separable due to its magnetizability on a natural mineral support largely available and obtained through low carbon- and energy footprint methods. The catalyst demonstrated outstanding performance with a 2,4-DNT conversion rate exceeding 99% along with high yields and selectivity towards 2,4-TDA and all of this achieved within a short reaction time. Furthermore, the developed catalyst exhibited excellent stability, attributed to the strong interaction between the catalytically active metal and its support. Even after four cycles of reuse, the catalytic activity remained unaffected and the Pd content of the catalyst did not change, which indicates that the palladium component remained firmly attached to the magnetic support's surface.

3.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139374

ABSTRACT

Catalysts with magnetic properties can be easily recovered from the reaction medium without loss by using a magnetic field, which highly improves their applicability. To design such systems, we have successfully combined the magnetic properties of nickel ferrite nanoparticles with the positive properties of carbon-based catalyst supports. Amine-functionalized NiFe2O4 nanoparticles were deposited on the surfaces of nitrogen-doped bamboo-like carbon nanotubes (N-BCNT) and carbon nanolayers (CNL) by using a coprecipitation process. The magnetizable catalyst supports were decorated by Pd nanoparticles, and their catalytic activity was tested through the hydrogenation of nitrobenzene (NB). By using the prepared catalysts, high nitrobenzene conversion (100% for 120 min at 333 K) and a high aniline yield (99%) were achieved. The Pd/NiFe2O4-CNL catalyst was remarkable in terms of stability during the reuse tests due to the strong interaction formed between the catalytically active metal and its support (the activity was retained during four cycles of 120 min at 333 K). Furthermore, despite the long-lasting mechanical stress, no significant palladium loss (only 0.08 wt%) was detected.


Subject(s)
Nanotubes, Carbon , Nickel , Hydrogenation , Aniline Compounds , Nitrobenzenes
4.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686152

ABSTRACT

Easy preparation, good yield and easy recovery are the key challenges in the development of industrial catalysts. To meet all these three criteria, we have prepared intelligent, magnetizable NiFe2O4- and CoFe2O4-supported palladium catalysts that can be easily and completely recovered from the reaction medium by magnetic separation. The fast and facile preparation was achieved by a solvothermal method followed by sonochemical-assisted decomposition of the palladium nanoparticles onto the surface of the magnetic nanoparticles. The metal-support interaction was enhanced by amine functionalization of the supports using monoethanolamine. The performance and stability of the non-functionalized and amine-functionalized NiFe2O4- and CoFe2O4-supported palladium catalysts were compared in the industrially important nitrobenzene hydrogenation reaction. All catalysts showed high catalytic activity during aniline synthesis; complete nitrobenzene conversion and high aniline yield (above 97 n/n%) and selectivity (above 98 n/n%) were achieved. However, during reuse tests, the activity of the non-functionalized catalysts decreased, as the palladium was leached from the surface of the support. On the other hand, in the case of their amine-functionalized counterparts, there was no decrease in activity, and a non-significant decrease in palladium content could be measured. Based on these results, it can be concluded that amine functionalization of transition metal ferrites may result in more effective catalysts due to the enhanced metal-carrier interaction between the support and the precious metal.


Subject(s)
Metal Nanoparticles , Nickel , Amines , Palladium , Hydrogenation , Cobalt , Aniline Compounds , Nitrobenzenes
5.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36361986

ABSTRACT

2,4-diaminotoluene (TDA) is one of the most important polyurethane precursors produced in large quantities by the hydrogenation of 2,4-dinitrotoluene using catalysts. Any improvement during the catalysis reaction is therefore of significant importance. Separation of the catalysts by filtration is cumbersome and causes catalyst loss. To solve this problem, we have developed magnetizable, amine functionalized ferrite supported palladium catalysts. Cobalt ferrite (CoFe2O4-NH2), nickel ferrite (NiFe2O4-NH2), and cadmium ferrite (CdFe2O4-NH2) magnetic catalyst supports were produced by a simple coprecipitation/sonochemical method. The nanospheres formed contain only magnetic (spinel) phases and show catalytic activity even without noble metals (palladium, platinum, rhodium, etc.) during the hydrogenation of 2,4-dinitrotoluene, 63% (n/n) conversion is also possible. By decorating the supports with palladium, almost 100% TDA selectivity and yield were ensured by using Pd/CoFe2O4-NH2 and Pd/NiFe2O4-NH2 catalysts. These catalysts possess highly favorable properties for industrial applications, such as easy separation from the reaction medium without loss by means of a magnetic field, enhanced reusability, and good dispersibility in aqueous medium. Contrary to non-functionalized supports, no significant leaching of precious metals could be detected even after four cycles.


Subject(s)
Nanospheres , Palladium , Hydrogenation , Palladium/chemistry , Cadmium , Amines , Catalysis
6.
J Environ Manage ; 324: 116371, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36202035

ABSTRACT

Atmospheric particulate matter (PM) has a significant threat not only to human health but also to our environment. In Hungary, 54% of PM10 comes from residential combustion, which also includes the practice of household waste burning. Therefore, this work aims to investigate the quality of combustion through the flue gas concentrations (CO, CO2, O2) and to identify and evaluate the negative impacts of PM and PAHs generated during controlled lab-scale combustion of different mixed wastes (cardboard and glossy paper, polypropylene and polyethylene terephthalate, polyester and cotton). Mixed wastes were burnt in a lab-scale tubular furnace at different temperatures with 180 dm3/h air flow rate. Chemical analyses were coupled with ecotoxicological tests using the bioluminescent bacterium Vibrio fischeri. Ecotoxicity was expressed as toxic unit (TU) values, toxic equivalent factors (TEF) were also presented. During the combustion same amount of O2 enters the reaction, but a different amount CO2 is generated due to the C content of the sample. The waste with highest C-content related to the highest CO2 emission. Increasing the combustion temperature produces more PM-bound PAHs, which remains the same composition in the case of plastic and textile groups. The TU of solid contaminants decreases with increasing combustion temperature and increases with the minerals which are left behind in the water from the solid contaminants.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Carbon Dioxide/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Temperature , Plastics , Air Pollutants/toxicity , Air Pollutants/analysis
7.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36142425

ABSTRACT

Granulated carbon nanotube-supported palladium and platinum-containing catalysts were developed. By using these, remarkable catalytic activity was achieved in chlorate ion hydrogenation. Nitrogen-doped bamboo-like carbon nanotubes (N-BCNTs) loaded gel beads were prepared by using Ca2+, Ni2+ or Fe3+ ions as precursors for cross-linking of sodium alginate. The gel beads were carbonized at 800 °C, and these granulated carbon nanocomposites (GCNC) were used as supports to prepare palladium and platinum-containing catalysts. All in all, three catalysts were developed and, in each case, >99 n/n% chlorate conversion was reached in the aqueous phase by using the Pd-Pt containing GCNCs, moreover, these systems retained their catalytic activity even after repeated use.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Alginates , Catalysis , Chlorates , Nitrogen , Palladium , Platinum
8.
Int J Mol Sci ; 23(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35742865

ABSTRACT

Carbon foam was synthesized by the carbonization of 4-nitroaniline. The reaction is an alternative of the well-known "carbon snake" (or sugar snake) demonstration experiment, which leads to the formation of nitrogen-doped carbon foils due to its nitrogen content. The synthesized carbon foils were grinded to achieve an efficient catalyst support. Palladium nanoparticles were deposited onto the surface of the support, which showed continuous distribution. The prepared Pd nanoparticle decorated carbon foils showed high catalytic activity in nitrobenzene hydrogenation. By applying the designed catalyst, total nitrobenzene conversion, a 99.1 n/n% aniline yield, and an exceptionally high selectivity (99.8 n/n%) were reached. Furthermore, the catalyst remained active during the reuse tests (four cycles) even without regeneration.


Subject(s)
Metal Nanoparticles , Palladium , Carbon , Hydrogenation , Nitrobenzenes , Nitrogen , Porosity
9.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742977

ABSTRACT

Aniline (AN) is one of the most important compounds in the chemical industry and is prepared by the catalytic hydrogenation of nitrobenzene (NB). The development of novel, multifunctional catalysts which are easily recoverable from the reaction mixture is, therefore, of paramount importance. Compared to conventional filtration, magnetic separation is favored because it is cheaper and more facile. For satisfying these requirements, we developed manganese ferrite (MnFe2O4)-supported, magnetically separable palladium catalysts with high catalytic activity in the hydrogenation of nitrobenzene to aniline. In addition to high NB conversion and AN yield, remarkable aniline selectivity (above 96 n/n%) was achieved. Surprisingly, the magnetic support alone also shows moderate catalytic activity even without noble metals, and thus, up to 94 n/n% nitrobenzene conversion, along with 47 n/n% aniline yield, are attainable. After adding palladium nanoparticles to the support, the combined catalytic activity of the two nanomaterials yielded a fast, efficient, and highly selective catalyst. During the test of the Pd/MnFe2O4 catalyst in NB hydrogenation, no by-products were detected, and consequently, above 96 n/n% aniline yield and 96 n/n% selectivity were achieved. The activity of the Pd/MnFe2O4 catalyst was not particularly sensitive to the hydrogenation temperature, and reuse tests indicate its applicability in at least four cycles without regeneration. The remarkable catalytic activity and other favorable properties can make our catalyst potentially applicable to both NB hydrogenation and other similar or slightly different reactions.


Subject(s)
Metal Nanoparticles , Palladium , Aniline Compounds , Ferric Compounds , Hydrogenation , Manganese , Manganese Compounds , Metal Nanoparticles/chemistry , Nitrobenzenes/chemistry , Palladium/chemistry
10.
Waste Manag ; 149: 302-312, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35760016

ABSTRACT

Consumer society requires the continuous evolution of products, thus generating a lot of waste. The automotive industry has also undergone significant development, generating 1.5 billion used tires worldwide every year. Landfilling of tires is prohibited and their disposal is therefore a major issue. Although many studies deal with the utilization of tire as a fuel, there is limited research that would specifically describe the relationship between pollutant emissions from tire combustion and the relationship between emitted pollutants and firebox temperature. Based on this, this work aims to investigate flue gas concentrations (CO, CO2, NOx, and SO2) and solid pollutants from tire burned in a lab-scale electrical furnace at firebox temperature from 650 to 900 °C. The decomposition of the CaCO3 filler during the combustion of the tire has been detected with thermal analytical investigation and combustion experiments. In the case of the CO flue gas pollutant, a second maximum concentration is observed due to the presence of CaCO3. With the increasing firebox temperature, the size of solid particles decreases, and the mesh structure formed becomes denser. At the same time, the concentration of emitted solid PAHs decreases, dominated by aromatic compounds with smaller number of rings. However, the variation of firebox temperature does not affect the amount of benzo(b)fluoranthene and fluoranthene relative to the total concentration.


Subject(s)
Air Pollutants , Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Gases , Incineration , Polycyclic Aromatic Hydrocarbons/analysis , Solid Waste , Temperature
11.
Sci Rep ; 12(1): 2292, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145149

ABSTRACT

Nanotechnology plays a vital role in all the scientific fields including environmental research due to their surface: volume ratio compared to bulk materials. Recent studies prove their effectiveness as pollutant removal and remediation practices. Zinc oxide (ZnO) nanoparticles a multifunctional material with distinct properties and their doped counterparts were widely being studied in different fields of science. However, its application in environmental waste treatment is starting to gain attention due to its low cost and high productivity. Heavy metal pollution is one of the major pollutants affecting aquatic and terrestrial life forms. Pollution in water bodies has also raised alarming concerns in the past decades. Most of the heavy metals are essential elements in trace amounts and omnipresent in the environment, causing toxicity for living organisms, for instance, nickel. In our work, we analysed the prospect of selective removal of nickel ions by different alkaline metals (K+, Rb+, and Cs+) doped zinc oxide nanoparticles fabricated by different treatment methods (as-prepared and heat-treated). We found morphological variations from flower like to rod like owing to the alkaline cations of  the dopants. In addition, the crystal structure and its different fractions presented amorphous content of the fabricated samples increased from 2 to 10 wt% with respect to the atomic radius of dopant in as-prepared samples and not present in heat-treated samples. We report, how the structure and the sample composition directly affected their adsorption behaviour towards Nickel ions in aqueous solutions based on the micro and nano zincite ratio of the ZnO particles.

12.
Int J Mol Sci ; 22(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34769280

ABSTRACT

Cellulose grains were carbonized and applied as catalyst supports for nickel- and magnetite-promoted bimetallic palladium- and platinum-containing catalysts. The bimetallic spherical aggregates of Pd and Pt particles were created to enhance the synergistic effect among the precious metals during catalytic processes. As a first step, the cellulose bead-based supports were impregnated by nitrate salts of nickel and iron and carbonized at 973 K. After this step, the nickel was in an elemental state, while the iron was in a magnetite form in the corresponding supports. Then, Pd and Pt particles were deposited onto the supports and the catalyst surface; precious metal nanoparticles (10-20 nm) were clustered inside spherical aggregated particles 500-600 nm in size. The final bimetallic catalysts (i.e., Pd-Pt/CCB, Pd-Pt/Ni-CCB, and Pd-Pt/Fe3O4-CCB) were tested in hydrogenation of chlorate ions in the aqueous phase. For the nickel-promoted Pd-Pt catalyst, a >99% chlorate conversion was reached after 45 min at 80 °C. In contrast, the magnetite-promoted sample reached an 84.6% chlorate conversion after 3 h. Reuse tests were also carried out with the catalysts, and in the case of Pd-Pt/Ni-CCB after five cycles, the catalytic activity only decreased by ~7% which proves the stability of the system.


Subject(s)
Cellulose/chemistry , Chlorates/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Platinum/chemistry , Catalysis , Water/chemistry
13.
Nanotechnology ; 32(42)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34252897

ABSTRACT

Carbon black (CB) supported palladium-platinum catalysts were prepared with and without nickel(II) oxide or iron(III) oxide promoter materials. By applying ultrasonic cavitation highly efficient CB supported catalysts were created. The designed catalyst preparation is a one-step procedure, as post-treatments (e.g. calcination, hydrogen activation) are not necessary. The activation of the catalysts occurs during their preparation due to the ultrasonic cavitation. Thus, a fast and simple catalyst preparation procedure have been developed. The activity of the catalysts was compared in nitrobenzene hydrogenation at different temperatures in the range of 283-323 K at 20 bar hydrogen pressure. In terms of selectivity and aniline yield, no significant differences were detected even when promoters were present. By using the NiO promoter, the activation energy was extremely low (7.6 ± 0.7 kJ mol-1). The selectivity was over 99% in every case, and 99.6% aniline yield was achieved without any promoters (99.7% with NiO), while less than 1.0% by-products were formed. The reaction rate was high with every catalyst, and no significant differences were detected. All in all, the prepared catalysts show excellent catalytic activity in the hydrogenation of nitrobenzene.

14.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073013

ABSTRACT

The catalytic hydrogenation of 2,4-dinitrotoluene (DNT) to 2,4-toluenediamine (TDA) is a key step in the production of polyurethanes; therefore, the development of efficient hydrogenation catalysts for industrial use is of paramount importance. In the present study, chromium(IV) oxide nanowires were decorated by palladium and platinum nanoparticles in a one-step, simple, and fast preparation method to yield highly efficient hydrogenation catalysts for immediate use. The nanoparticles were deposited onto the surface of CrO2 nanowires by using ultrasonic cavitation and ethanol as a reduction agent. Beneficially, the catalyst became catalytically active right at the end of the preparation and no further treatment was necessary. The activity of the Pd- and Pt-decorated CrO2 catalysts were compared in the hydrogenation of 2,4-dinitrotoluene (DNT). Both catalysts have shown high activity in the hydrogenation tests. The DNT conversion exceeded 98% in both cases, whereas the 2,4-toluenediamine (TDA) yields were 99.7 n/n% and 98.8 n/n%, with the Pd/CrO2 and Pt/CrO2, respectively, at 333 K and 20 bar H2 pressure. In the case of the Pt/CrO2 catalyst, 304.08 mol of TDA formed with 1 mol Pt after 1 h hydrogenation. Activation energies were also calculated to be approximately 24 kJ∙mol-1. Besides their immediate applicability, our catalysts were well dispersible in the reaction medium (methanolic solution of DNT). Moreover, because of their magnetic behavior, the catalysts were easy to handle and remove from the reaction media by using a magnetic field.


Subject(s)
Chromium Compounds/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Palladium/chemistry , Platinum/chemistry , Catalysis
15.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947046

ABSTRACT

Glassy carbon foam (GCF) catalyst supports were synthesized from waste polyurethane elastomers by impregnating them in sucrose solution followed by pyrolysis and activation (AC) using N2 and CO2 gas. The palladium nanoparticles were formed from Pd(NO3)2. The formed palladium nanoparticles are highly dispersive because the mean diameters are 8.0 ± 4.3 (Pd/GCF), 7.6 ± 4.2 (Pd/GCF-AC1) and 4.4 ± 1.6 nm (Pd/GCF-AC2). Oxidative post-treatment by CO2 of the supports resulted in the formation of hydroxyl groups on the GCF surfaces, leading to a decrease in zeta potential. The decreased zeta potential increased the wettability of the GCF supports. This, and the interactions between -OH groups and Pd ions, decreased the particle size of palladium. The catalysts were tested in the hydrogenation of nitrobenzene. The non-treated, glassy-carbon-supported catalyst (Pd/GCF) resulted in a 99.2% aniline yield at 293 K and 50 bar hydrogen pressure, but the reaction was slightly slower than other catalysts. The catalysts on the post-treated (activated) supports showed higher catalytic activity and the rate of hydrogenation was higher. The maximum attained aniline selectivities were 99.0% (Pd/GCF-AC1) at 293 K and 98.0% (Pd/GCF-AC2) at 323 K.

16.
J Nanosci Nanotechnol ; 19(1): 429-435, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30327052

ABSTRACT

Nitrogen-doped bamboo-shaped carbon nanotubes (N-BCNT) were synthesized from butylamine using the catalytic chemical vapor deposition (CCVD) process. The carbon source was nitrogen content organic molecules, namely butylamine. Reaction conditions such as temperature, amount of carbon source and catalyst were optimized to produce high quality N-BCNT samples. The nitrogen content was measured by CHNS element analysis, while the butylamine conversion was calculated based on the weight of deposited carbon materials. The bamboo structure of the nanotubes was examined by high resolution transmission electron microscopy (HRTEM). Two different types of nitrogen incorporation forms, the pyridinic and the graphitic, were identified in the samples by X-ray photoelectron spectroscopy (XPS). The lattice defects were measured by Raman spectroscopy. The proportion of defect sites influenced by the nitrogen content which can be controlled by the synthesis temperature. The optimal conditions were identified for the economical synthesis of N-BCNTs with high nitrogen content for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...