Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(16): 161103, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675862

ABSTRACT

Using light energy to drive chemical reactions on semiconductor surfaces is the basis for technological applications ranging from the removal of organic pollutants to the generation of renewable solar fuels, yet our understanding of the mechanisms has been hindered by the multistep nature of the process and the wide range of time scales over which it occurs (femtoseconds to seconds). In this work, we use ultrafast laser pump-probe techniques to follow the time evolution of substrate-induced photooxidation of acetone on a titania surface. A UV light at 260 nm initiates carrier-induced fragmentation of adsorbed acetone on a TiO2(110) surface that was pretreated with oxygen. The photoreaction results in the ejection of methyl radicals into the gas-phase that are detected by the probe pulse via resonant multiphoton ionization. The time evolution of the methyl radicals leaving the surface exhibits ultrafast rise times, 300-700 fs, followed by a more gradual rise that plateaus by 10 ps, with faster rates at a low acetone coverage. These results are interpreted in terms of a time-dependent rate expression and a mechanism in which the fragmentation of the acetone surface species is driven by interactions with nonequilibrium, "hot" holes.

2.
Struct Dyn ; 5(5): 054301, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30246049

ABSTRACT

Time- and Angle-resolved photoelectron spectroscopy from surfaces can be used to record the dynamics of electrons and holes in condensed matter on ultrafast time scales. However, ultrafast photoemission experiments using extreme-ultraviolet (XUV) light have previously been limited by either space-charge effects, low photon flux, or limited tuning range. In this article, we describe XUV photoelectron spectroscopy experiments with up to 5 nA of average sample current using a tunable cavity-enhanced high-harmonic source operating at 88 MHz repetition rate. The source delivers >1011 photons/s in isolated harmonics to the sample over a broad photon energy range from 18 to 37 eV with a spot size of 58 × 100 µm2. From photoelectron spectroscopy data, we place conservative upper limits on the XUV pulse duration and photon energy bandwidth of 93 fs and 65 meV, respectively. The high photocurrent, lack of strong space charge distortions of the photoelectron spectra, and excellent isolation of individual harmonic orders allow us to observe laser-induced modifications of the photoelectron spectra at the 10-4 level, enabling time-resolved XUV photoemission experiments in a qualitatively new regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...