Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int Immunol ; 35(9): 447-458, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37418020

ABSTRACT

Cry j 1 is a major allergen present in Japanese cedar (Cryptomeria japonica) pollens. Peptides with the core sequence of KVTVAFNQF from Cry j 1 ('pCj1') bind to HLA-DP5 and activate Th2 cells. In this study, we noticed that Ser and Lys at positions -2 and -3, respectively, in the N-terminal flanking (NF) region to pCj1 are conserved well in HLA-DP5-binding allergen peptides. A competitive binding assay showed that the double mutation of Ser(-2) and Lys(-3) to Glu [S(P-2)E/K(P-3)E] in a 13-residue Cry j 1 peptide (NF-pCj1) decreased its affinity for HLA-DP5 by about 2-fold. Similarly, this double mutation reduced, by about 2-fold, the amount of NF-pCj1 presented on the surface of mouse antigen-presenting dendritic cell line 1 (mDC1) cells stably expressing HLA-DP5. We established NF-pCj1-specific and HLA-DP5-restricted CD4+ T-cell clones from HLA-DP5 positive cedar pollinosis (CP) patients, and analyzed their IL-2 production due to the activation of mouse TG40 cells expressing the cloned T-cell receptor by the NF-pCj1-presenting mDC1 cells. The T-cell activation was actually decreased by the S(P-2)E/K(P-3)E mutation, corresponding to the reduction in the peptide presentation by this mutation. In contrast, the affinity of NF-pCj1·HLA-DP5 for the T-cell receptor was not affected by the S(P-2)E/K(P-3)E mutation, as analyzed by surface plasmon resonance. Considering the positional and side-chain differences of these NF residues from previously reported T-cell activating sequences, the mechanisms of enhanced T-cell activation by Ser(-2) and Lys(-3) of NF-pCj1 may be novel.


Subject(s)
Allergens , Cryptomeria , Animals , Mice , Cryptomeria/chemistry , Antigens, Plant , Plant Proteins/genetics , Plant Proteins/analysis , Plant Proteins/chemistry , Pollen , Peptides , Receptors, Antigen, T-Cell
2.
FEBS Lett ; 597(9): 1275-1289, 2023 05.
Article in English | MEDLINE | ID: mdl-36876994

ABSTRACT

Autoimmune coagulation factor XIII (FXIII) deficiency (AiF13D) is a bleeding disorder caused by anti-FXIII autoantibodies. Recently, we generated human monoclonal antibodies (mAbs) from the peripheral blood of an AiF13D patient and classified them into three groups: FXIII-dissociation inhibitor, FXIII-assembly inhibitor, and non-neutralizing/inhibitory mAbs. However, the epitope region and molecular inhibitory mechanism of each mAb remain unknown. Here, we localized the epitope regions of the representative inhibitory mAbs A69K (dissociation inhibitor) and A78L (assembly inhibitor) to the ß-barrel-2 domain and boundary of ß-barrel-1&2 domains, respectively, of the FXIII-A subunit, by combining a binding assay using its synthesized peptides and a protease-protection assay. Our findings suggest that A69K inhibits the activation-related conformational changes and dissociation of FXIII and that A78L competitively inhibits FXIII-assembly.


Subject(s)
Antibodies, Monoclonal , Factor XIII Deficiency , Humans , Epitopes , Factor XIII/analysis , Autoantibodies
3.
J Thromb Haemost ; 21(2): 255-268, 2023 02.
Article in English | MEDLINE | ID: mdl-36700504

ABSTRACT

BACKGROUND: Coagulation factor XIII (FXIII) consists of 2 A (FXIII-A) and 2 B (FXIII-B) subunits that cross-link and strengthen the hemostatic fibrin thrombus; thus, abnormal bleeding occurs when FXIII is significantly reduced. Autoimmune-acquired FXIII deficiency (AiF13D) is characterized by lethal bleeding secondary to the development of autoantibodies against FXIII. However, since anti-FXIII autoantibodies are polyclonal, the mechanism underlying FXIII dysfunction is unclear. OBJECTIVES: The objective of this study was to dissect the inhibitory mechanisms of polyclonal anti-FXIII autoantibodies. METHODS: In this study, we prepared the human monoclonal antibodies (hmAbs) from the peripheral blood of an 86-year-old man with AiF13D by using a new complementary DNA cloning method and analyzed the properties of each autoantibody. RESULTS: Seventeen clones obtained from hmAbs were divided into the following 3 groups: dissociation inhibitors of FXIII-A2B2 (6 clones), assembly inhibitors of FXIII-A2B2 (3 clones), and nonneutralizing/inhibitory hmAbs (8 clones). Dissociation inhibitors strongly inhibited fibrin cross-linking and amine incorporation. Assembly inhibitors extracted FXIII-A from FXIII-A2B2, strongly inhibited binding of FXIII-A to FXIII-B, and activation peptide cleavage. However, the patient's plasma presented a strong inhibition of A2B2 heterodimer assembly but only a slight inhibition of thrombin-Ca2+-dependent dissociation, suggesting that the assembly inhibitors concealed the effect of dissociation inhibitors in plasma. By contrast, nonneutralizing antibodies had little effect on the function of FXIII, suggesting that nonneutralizing hmAbs (and/or dissociation inhibitors and/or assembly inhibitors) promoted the clearance of FXIII-A from the blood. CONCLUSION: Cloning of anti-FXIII autoantibodies enabled us to not only elucidate the mechanism and pathophysiology of AiF13D but also develop a completely new type of anticoagulant.


Subject(s)
Antibodies, Monoclonal , Factor XIII Deficiency , Male , Humans , Aged, 80 and over , Factor XIII/chemistry , Factor XIIIa , Autoantibodies , Factor XIII Deficiency/diagnosis , Fibrin , Cloning, Molecular
4.
Cell Immunol ; 383: 104656, 2023 01.
Article in English | MEDLINE | ID: mdl-36521300

ABSTRACT

T cell receptor-engineered T cell (TCR-T) therapy is anticipated as a next generation-immunotherapy for cancer and recent advances of TCR isolation technology have enabled patient's T cells to express TCRs recognizing multiple combinations of specific peptides and human leukocyte antigens (HLA). However, evaluation processes for the TCR-induced cytotoxicity activity using primary T cells are laborious and time-consuming. In this study, we established a cell line that do not express endogenous TCRs, enabling to generate large numbers of homogeneous cells, and can measure the cytotoxic activity of the isolated TCRs. To this end, we transduced a Natural Killer (NK) cell line with human CD3 molecules and interleukin (IL)-2. The TCR expressing NK cells killed target cells as similarly to TCR-transduced primary T cells and secreted various cytokines/chemokines including IL-2. Thus, the gene-modified NK cell can be a powerful tool to rapidly and efficiently evaluate the functions of isolated TCRs.


Subject(s)
Cytotoxicity, Immunologic , Receptors, Antigen, T-Cell , Humans , Killer Cells, Natural , Cell Line , Cell- and Tissue-Based Therapy
5.
Cancer Sci ; 113(10): 3321-3329, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35766417

ABSTRACT

T-cell receptor (TCR)-like Abs that specifically recognize antigenic peptides presented on MHC molecules have been developed for next-generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR-like Abs using a rabbit system. We humanized previously generated rabbit-derived TCR-like Abs reacting Epstein-Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA-A24 molecules, produced chimeric antigen receptor (CAR)-T cells, and evaluated their antitumor effects using in vitro and in vivo tumor models. Humanization of the rabbit-derived TCR-like Abs using the complementarity-determining region grafting technology maintained their specificity and affinity. We prepared a second-generation CAR using single-chain variable fragment of the humanized TCR-like Abs and then transduced them into human T cells. The CAR-T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen-specific manner in vitro. They also demonstrated antitumor activity in a mouse xenograft model. We report the generation of CAR-T cells using humanized rabbit-derived TCR-like Abs. Together with our established and efficient generation procedure for TCR-like Abs using rabbits, our platform for the clinical application of humanized rabbit-derived TCR-like Abs to CAR-T cells will help improve next-generation cancer immunotherapy.


Subject(s)
Epstein-Barr Virus Infections , Neoplasms , Receptors, Chimeric Antigen , Single-Chain Antibodies , Animals , Complementarity Determining Regions , HLA-A24 Antigen , Herpesvirus 4, Human , Humans , Mice , Neoplasms/therapy , Rabbits , Receptors, Antigen, T-Cell
6.
Nat Biomed Eng ; 6(7): 806-818, 2022 07.
Article in English | MEDLINE | ID: mdl-35393565

ABSTRACT

It is commonly understood that T cells are activated via trans interactions between antigen-specific T-cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules on antigen-presenting cells. By analysing a large number of T cells at the single-cell level on a microwell array, we show that T-cell activation can occur via cis interactions (where TCRs on the T cell interact with the antigenic peptides presented on MHC class-I molecules on the same cell), and that such cis activation can be used to detect antigen-specific T cells and clone their TCR within 4 d. We used the detection-and-cloning system to clone a tumour-antigen-specific TCR from peripheral blood mononuclear cells of healthy donors. TCR cloning by leveraging the cis activation of T cells may facilitate the development of TCR-engineered T cells for cancer therapy.


Subject(s)
Leukocytes, Mononuclear , T-Lymphocytes , Antigens, Neoplasm , Cloning, Molecular , Peptides , Receptors, Antigen, T-Cell/genetics
7.
Eur J Immunol ; 51(9): 2306-2316, 2021 09.
Article in English | MEDLINE | ID: mdl-34171120

ABSTRACT

Tumor-infiltrating lymphocytes (TILs) are a potent source for obtaining tumor-reactive T cell receptors (TCRs). Although comprehensive methods to analyze the TCR repertoire in TILs have been reported, the evaluation system for TCR-reactivity to endogenously expressed antigen in tumor cells remains laborious and time consuming. Consequently, very limited numbers of TCRs in TILs have been analyzed for their reactivity to tumor cells. In this study, we developed an efficient evaluation system for TCR function designated c-FIT (comprehensive functional investigation of TCRs) to analyze TCR reactivity. The c-FIT system enabled us to analyze up to 90 TCRs for their reactivity to tumor cells by a single assay within a month. Using c-FIT, we analyzed 70 TCRs of CD8+ TILs derived from two breast cancer patients and obtained 23 TCRs that reacted to tumor cells. Surprisingly, although two TCRs were HLA class I-restricted, the remaining 21 TCRs were non-HLA-restricted. Thus, c-FIT can be applied for monitoring multiple conventional and unconventional antigen-specific killer T cells in TILs, leading to the development of new designs for more effective T-cell-based immunotherapies.


Subject(s)
Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , CD8 Antigens/metabolism , Cell Line, Tumor , Female , Humans , Immunotherapy, Adoptive/methods , MCF-7 Cells , Middle Aged
8.
Eur J Immunol ; 51(7): 1850-1853, 2021 07.
Article in English | MEDLINE | ID: mdl-33728647

ABSTRACT

Generation of TCR-like monoclonal antibodies using conventional methods is markedly laborious and inefficient. We have proposed improvements of ISAAC (chip-based Ab-secreting cell [ASC] screening method), allows comprehensive analysis of ASCs at the single-cell level to obtain TCR-like antibodies; blocking procedure enables us to avoid the detection of non-TCR-like antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Humans , Single-Cell Analysis/methods
9.
Arthritis Rheumatol ; 72(12): 2040-2049, 2020 12.
Article in English | MEDLINE | ID: mdl-32621659

ABSTRACT

OBJECTIVE: In plasma from a patient with rheumatoid arthritis (RA), we previously isolated a human monoclonal anti-citrullinated protein antibody (ACPA), CCP-Ab1, that recognizes various citrullinated antigens. In this study, we aimed to explore the physiologic target of CCP-Ab1 and the role of molecular evolution, through affinity maturation, of this ACPA in the onset and the exacerbation of RA. METHODS: The target protein of CCP-Ab1 was identified in the plasma of a patient with RA and purified under native conditions. Germline-reverted (GL-rev) CCP-Ab1 was generated, and its reactivity was compared to that of mature CCP-Ab1. The functions of CCP-Ab1 and GL-rev CCP-Ab1 in the onset or exacerbation of autoimmune arthritis were analyzed using autoimmune arthritis-prone SKG mice. RESULTS: CCP-Ab1 bound citrullinated fibrinogen under native conditions. In cultures with GL-rev CCP-Ab1, the binding affinity to citrullinated fibrinogen was drastically reduced (P < 0.05). The elements implicated in GL-rev CCP-Ab1 binding to a citrullinated peptide, cfc1-cyc, were almost identical to those implicated in CCP-Ab1 binding. In arthritis-prone SKG mice, CCP-Ab1, but not GL-rev CCP-Ab1, induced significant exacerbation of experimental arthritis (P < 0.05). Increased production of interleukin-6, both in the joint tissue and in the serum, was observed in SKG mice treated with CCP-Ab1 compared to those treated with GL-rev CCP-Ab1 (P < 0.05). Furthermore, the immune complex formed by CCP-Ab1 and fibrinogen was detected at higher concentrations in the synovial tissue of SKG mice administered CCP-Ab1 (P < 0.05 versus control treatment groups). CONCLUSION: These data show that germline-encoded CCP-Ab1, which binds weakly to citrullinated fibrinogen, undergoes hypermutation through the activation of naive B cells by citrullinated peptides/proteins, thereby stimulating high reactivity to citrullinated fibrinogen. These findings deepen our understanding of the role of molecular evolution of ACPAs in the onset and exacerbation of RA.


Subject(s)
Anti-Citrullinated Protein Antibodies/metabolism , Arthritis, Rheumatoid/immunology , Synovial Membrane/immunology , Animals , Arthritis, Experimental/immunology , Autoantigens/immunology , Evolution, Molecular , Female , Humans , Mice , Protein Binding
10.
Eur J Immunol ; 50(10): 1580-1590, 2020 10.
Article in English | MEDLINE | ID: mdl-32441316

ABSTRACT

Adoptive T cell therapy using tumor-specific T cells or TCR-modified T cells is a promising next-generation immunotherapy. The major source of tumor-reactive T cells is PD-1+ tumor-infiltrating lymphocytes (TILs). In contrast, PD-1- TILs have received little attention. Here, we analyzed the TCR-ß repertoires of PD-1- and PD-1+ CD8+ TILs derived from colorectal cancer and breast cancer. Approximately 40-60% of the PD-1+ population consisted of oligoclonal populations in both colorectal cancer and breast cancer. In contrast, approximately 37% of the PD-1- population consisted of an oligoclonal population in colorectal cancer, whereas 14% of them were oligoclonal in breast cancer. In colorectal cancer, the TCR repertoires of PD-1- CD8+ TILs and PD-1+ CD8+ TILs hardly overlapped. Interestingly, clonally expanded CD8+ TILs in primary tumors and the metastases expressing the same clonotypic TCR showed the same phenotype regarding the PD-1-expression. These results suggest that the intrinsic properties of TCRs determine the fate of TILs in terms of whether they become PD-1+ or PD-1- in the tumor microenvironment. Further functional analysis of TCRs in TILs will allow us to better understand the regulatory mechanisms for PD-1 expression on TILs and may contribute to tumor immunotherapy.


Subject(s)
Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/metabolism , Programmed Cell Death 1 Receptor/metabolism , Aged , Aged, 80 and over , Breast Neoplasms/therapy , Clone Cells , Colorectal Neoplasms/therapy , Female , Genes, T-Cell Receptor beta , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/genetics
11.
PLoS One ; 15(4): e0229196, 2020.
Article in English | MEDLINE | ID: mdl-32294099

ABSTRACT

Citrus mosaic virus (CiMV) is one of the causal viruses of citrus mosaic disease in satsuma mandarins (Citrus unshiu). Prompt detection of trees infected with citrus mosaic disease is important for preventing the spread of this disease. Although rabbit monoclonal antibodies (mAbs) exhibit high specificity and affinity, their applicability is limited by technical difficulties associated with the hybridoma-based technology used for raising these mAbs. Here, we demonstrate a feasible CiMV detection system using a specific rabbit mAb against CiMV coat protein. A conserved peptide fragment of the small subunit of CiMV coat protein was designed and used to immunize rabbits. Antigen-specific antibody-producing cells were identified by the immunospot array assay on a chip method. After cloning of variable regions in heavy or light chain by RT-PCR from these cells, a gene set of 33 mAbs was constructed and these mAbs were produced using Expi293F cells. Screening with the AlphaScreen system revealed eight mAbs exhibiting strong interaction with the antigen peptide. From subsequent sequence analysis, they were grouped into three mAbs denoted as No. 4, 9, and 20. Surface plasmon resonance analysis demonstrated that the affinity of these mAbs for the antigen peptide ranged from 8.7 × 10-10 to 5.5 × 10-11 M. In addition to CiMV, mAb No. 9 and 20 could detect CiMV-related viruses in leaf extracts by ELISA. Further, mAb No. 20 showed a high sensitivity to CiMV and CiMV-related viruses, simply by dot blot analysis. The anti-CiMV rabbit mAbs obtained in this study are envisioned to be extremely useful for practical applications of CiMV detection, such as in a virus detection kit.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Citrus/virology , Mosaic Viruses/isolation & purification , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibody Specificity/immunology , Capsid Proteins/immunology , Kinetics , Plant Leaves/virology , Rabbits
12.
Mol Ther ; 28(1): 129-141, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31677955

ABSTRACT

Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.


Subject(s)
Cellular Reprogramming/genetics , Genetic Vectors , Genome, Viral/genetics , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Measles virus/genetics , RNA, Viral/genetics , Animals , Blood Donors , Cell Differentiation/genetics , Fibroblasts/metabolism , Genetic Therapy/methods , HEK293 Cells , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Sendai virus/genetics , T-Lymphocytes/metabolism , Transduction, Genetic , Transgenes
13.
N Biotechnol ; 49: 169-177, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30465909

ABSTRACT

Soluble peptide/major histocompatibility complex (p/MHC) tetramers that directly bind to T cell receptors (TCRs) allow the direct quantification, phenotypic characterization and isolation of antigen-specific T cells. Conventionally, soluble p/MHC tetramers have been produced using Escherichia coli, but this method requires refolding of the recombinant proteins. Here, a novel and technically simple method that does not require protein refolding in vitro has been developed for the high-throughput generation of soluble and functional p/MHC-single chain trimer (SCT) monomers and tetramers in a mammalian cell system. The p/MHC-SCT tetramers generated by this method bound to the corresponding antigen-specific TCRs. Moreover, the immobilized p/MHC-SCT monomers effectively activated antigen-specific T cell lines as well as primary T cells in an antigen-specific manner. This technique provides a robust improvement in the technology, such that recombinant soluble p/MHC monomers and tetramers can be produced more readily and which enables their use in analysis of antigen-specific T cells in basic and clinical studies.


Subject(s)
Antigens/metabolism , Biotechnology/methods , Major Histocompatibility Complex , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Recombinant Proteins/biosynthesis , Amino Acid Sequence , Cell Line , Humans , Interferon-gamma/metabolism , Leukocytes, Mononuclear/metabolism , Peptides/chemistry , Solubility , Tissue Donors
14.
Methods Mol Biol ; 1904: 147-162, 2019.
Article in English | MEDLINE | ID: mdl-30539469

ABSTRACT

Antigen-specific monoclonal antibodies are useful tools to detect very small amounts of antigenic materials and are applicable for antibody therapeutics. To produce mouse monoclonal antibodies, a hybridoma between B lymphocytes and myeloma cells is used to produce antigen-specific monoclonal antibodies. However, a good hybridoma system is not available to obtain human monoclonal antibodies. To produce antigen-specific human monoclonal antibodies, transformation of B lymphocytes with Epstein-Barr viruses or a phage-display system is used. Here, we describe the screening of antigen-specific, antibody-secreting cells using microwell array chips to obtain antigen-specific human monoclonal antibodies. The system can be applied to screen antigen-specific, antibody-secreting cells from any animal species.


Subject(s)
Antibody Formation/immunology , Antibody-Producing Cells/immunology , Antigens/immunology , Epitopes/immunology , Immunoassay , Microarray Analysis , Antibody Formation/genetics , Antibody-Producing Cells/metabolism , Biomarkers , Gene Expression , Genetic Vectors/genetics , Hybridomas/immunology , Immunoassay/methods , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Microarray Analysis/methods
15.
J Immunol ; 201(12): 3492-3496, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30420436

ABSTRACT

Generation of neoantigens by citrullination is implicated in the production of anti-citrullinated protein Abs in rheumatoid arthritis, but citrullination is also a physiological process. To verify whether citrullin-specific B cells are immunologically ignorant or tolerant in normal conditions, transgenic (Tg) mice expressing IgM with the V region of an anti-cyclic citrullinated peptide (CCP) mAb cloned from a rheumatoid arthritis patient were generated. CCP-specific B cells developed in the anti-CCP IgM Tg mice with an alteration of bone marrow B cell fractions, and the number of mature B cells decreased compared with wild-type or the control anti-influenza nucleoprotein-specific IgM Tg mice. In addition, B cells in anti-CCP IgM Tg mice are functionally anergic. Thus, tolerance is induced in CCP-specific B cells in vivo, suggesting that the immune systems are naturally exposed to citrullinated Ags, and anti-CCP Ab production requires additional steps beyond the generation of neoantigens by citrullination.


Subject(s)
Arthritis, Rheumatoid/immunology , B-Lymphocytes/immunology , Immunoglobulin M/metabolism , Peptides, Cyclic/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , Antibodies, Monoclonal/genetics , Cells, Cultured , Clonal Anergy , Humans , Immune Tolerance , Immunoglobulin M/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Engineering , Receptors, Antigen, B-Cell/genetics
16.
Onco Targets Ther ; 11: 5047-5057, 2018.
Article in English | MEDLINE | ID: mdl-30174443

ABSTRACT

INTRODUCTION: Doublecortin-like kinase 1 (DCLK1) is considered a putative tumor stem cell (TSC) marker and a promising therapeutic target, as DCLK1+ progeny cells exhibit high expression in tumors. However, the biological function of DCLK1+ cells in tumorigenesis and tumor progression remains unclear. MATERIALS AND METHODS: We generated rabbit monoclonal antibodies (mAbs) against DCLK1, DCLK1-42, and DCLK1-87 mAbs, using a novel chip-based immunospot array assay on a chip system. First, the specificity of two mAbs to DCLK1 was confirmed by Western blot, which were bound to DCLK1-long in normal colon cells and to DCLK1-short in a cancer cell line as well as colorectal cancer (CRC) cells. RESULTS: Precise localization analysis using immunofluorescence revealed that both mAbs had cytoplasmic signal and exhibited a high degree of overlap with microtubules. Furthermore, bacterial display technology indicated that the antigenic epitope region of DCLK1-87 mAb was consistent with that of a commercial anti-DCLK1 polyclonal antibody. In addition, DCLK1-42 mAb has the common polyclonal antibody characteristic of binding to more than one site on DCLK1. By immunohistochemistry, it was found that DCLK1-87 mAb was more specific for DCLK1+ cell labeling than a commercial anti-DCLK1 polyclonal antibody. DCLK1 labeled with DCLK1-87 mAb might be a potential TSC marker because the tissue expression site covers the ALDH1 area in CRC tissues. Finally, we analyzed 100 pairs of cancer tissues and matching paracancerous tissue samples from patients with CRC who received 100 months of follow-up with the DCLK1-87 mAb. The results showed that patients with high DCLK1 expression exhibited a longer survival time than that of patients with low DCLK1 expression (P=0.0029). DISCUSSION: Our results indicated that we successfully generated an efficient tool for the precise detection of DCLK1+ cells in cancer tissues. Moreover, we found that high DCLK1 expression in CRC patients appears to play a protective role against tumor progression.

17.
Front Immunol ; 9: 1934, 2018.
Article in English | MEDLINE | ID: mdl-30197648

ABSTRACT

Background: Regulatory T (Treg) cells are necessary for the maintenance of allogenic pregnancy. However, the repertoire of effector Treg cells at the feto-maternal interface in human pregnancy remains unknown. Our objective was to study T cell receptor (TCR) repertoires of Treg cells during pregnancy compared to normal and complicated pregnancies. Methods:Paired samples of peripheral blood and decidua in induced abortion and miscarriage cases were obtained from consenting patients. CD4+CD25+CD127low/-CD45RA- effector Treg cells were single-cell sorted from mononuclear cells. cDNAs of complementarity determining region 3 (CDR3) in TCRß were amplified from the single cells by RT-PCR and the sequences were analyzed. The TCRß repertoires were determined by amino acid and nucleotide sequences. Treg cells were classified into clonally expanded and non-expanded populations by CDR3 sequences. Results: We enrolled nine induced abortion cases in the 1st trimester, 12 cases delivered without complications in the 3rd trimester, 11 miscarriages with abnormal chromosomal karyotyped embryo, seven miscarriages with normal chromosomal karyotyped embryo, and seven cases of preeclampsia [median gestational week (interquartile range): 7 (7-9), 39 (38-40), 9 (8-10), 8 (8-10), and 34 (32-37), respectively]. The frequency of clonally expanded populations of effector Treg cells increased in decidua of 3rd trimester cases compared to 1st trimester cases [4.5% (1.4-10.8%) vs. 20.9% (15.4-28.1%), p < 0.001]. Clonally expanded Treg cells were rarely seen in peripheral blood. The ratio of clonally expanded populations of decidual effector Treg cells in miscarriages with abnormal and normal embryos was not significantly different compared with that in 1st trimester normal pregnancy. Interestingly, clonally expanded populations of effector Treg cells decreased in preeclampsia compared with that in 3rd trimester normal pregnancy [9.3% (4.4-14.5%) vs. 20.9% (15.4-28.1%), p = 0.003]. When repertoires in previous pregnancy and subsequent pregnancy were compared, some portions of the repertoire were shared. Conclusion: TCR repertoires of decidual effector Treg cells are skewed in the 3rd trimester of normal pregnancy. Failure of clonal expansion of populations of decidual effector Treg cells might be related to the development of preeclampsia.


Subject(s)
Abortion, Spontaneous/immunology , Decidua/immunology , Pre-Eclampsia/immunology , T-Lymphocytes, Regulatory/immunology , Abortion, Spontaneous/pathology , Adult , Decidua/pathology , Female , Humans , Pre-Eclampsia/pathology , Pregnancy , T-Lymphocytes, Regulatory/pathology
18.
Blood ; 132(18): 1911-1921, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30150207

ABSTRACT

Recent studies have highlighted the promise of targeting tumor neoantigens to generate potent antitumor immune responses and provide strong motivation for improving our understanding of antigen-T-cell receptor (TCR) interactions. Advances in single-cell sequencing technologies have opened the door for detailed investigation of the TCR repertoire, providing paired information from TCRα and TCRß, which together determine specificity. However, a need remains for efficient methods to assess the specificity of discovered TCRs. We developed a streamlined approach for matching TCR sequences with cognate antigen through on-demand cloning and expression of TCRs and screening against candidate antigens. Here, we first demonstrate the system's capacity to identify viral-antigen-specific TCRs and compare the functional avidity of TCRs specific for a given antigen target. We then apply this system to identify neoantigen-specific TCR sequences from patients with melanoma treated with personalized neoantigen vaccines and characterize functional avidity of neoantigen-specific TCRs. Furthermore, we use a neoantigen-prediction pipeline to show that an insertion-deletion mutation in a putative chronic lymphocytic leukemia (CLL) driver gives rise to an immunogenic neoantigen mut-MGA, and use this approach to identify the mut-MGA-specific TCR sequence. This approach provides a means to identify and express TCRs, and then rapidly assess antigen specificity and functional avidity of a reconstructed TCR, which can be applied for monitoring antigen-specific T-cell responses, and potentially for guiding the design of effective T-cell-based immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology , T-Cell Antigen Receptor Specificity , Cancer Vaccines/therapeutic use , Cells, Cultured , Cloning, Molecular/methods , HEK293 Cells , Humans , Jurkat Cells , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Melanoma/immunology , Melanoma/therapy , Receptors, Antigen, T-Cell/genetics
19.
Eur J Immunol ; 48(10): 1717-1727, 2018 10.
Article in English | MEDLINE | ID: mdl-29989658

ABSTRACT

Anti-Ro52 autoantibodies (Ro52-autoAbs) appear in the sera of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Studies using patient sera have shown a correlation between the generation of Ro52-autoAbs and the clinical morbidity and severity of CTD with ILD. In this study, we used a single B-cell manipulating technology and obtained 12 different monoclonal Ro52-autoAbs (mRo52-autoAbs) from the selected four patients suffering from severe ILD with a high titer of Ro52-autoAbs in their sera. Western blot analysis revealed that 11 of 12 mRo52-autoAbs bound to the coiled-coil domain of Ro52. Competitive ELISA demonstrated that mRo52-autoAbs competed with each other to bind to Ro52. Epitope mapping showed that two of them specifically bound to a peptide (PEP08) in the coiled-coil domain. We then examined the titer of Ro52-autoAbs in the sera of 192 CTD patients and assessed the relationship between the serum levels of Ro52-autoAbs that were reactive to PEP08 peptide and the clinical morbidity and severity of ILD. Statistical analysis revealed that the production of PEP08-reactive Ro52-autoAbs correlated with the morbidity and severity of ILD in CTD. Assessment of the production of PEP08-reactive Ro52-autoAbs in autoimmune diseases is useful for predicting the clinical morbidity of ILD.


Subject(s)
Autoantibodies/immunology , Lung Diseases, Interstitial/immunology , Peptides/immunology , Ribonucleoproteins/blood , Ribonucleoproteins/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Autoantibodies/blood , Connective Tissue Diseases/immunology , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Female , Humans , Male , Middle Aged , Morbidity , Peptides/chemistry , Severity of Illness Index
20.
Oncol Lett ; 15(6): 9251-9256, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29805654

ABSTRACT

The aberrant activation of receptor tyrosine kinases (RTKs) is associated with tumor initiation in various types of human cancer, including non-small cell lung cancers (NSCLCs). Tyrosine kinase-independent non-canonical RTK regulation has also been investigated in tumor malignant alterations, including cellular stress responses. It was recently reported that the phosphorylation of epidermal growth factor receptor (EGFR) at C-terminal Ser-1015 serves a critical role in growth factor and cytokine signaling. In the present study, the role of non-canonical EGFR regulation has been investigated in NSCLC cells treated with cisplatin, a common chemotherapeutic agent. Cisplatin-induced p38 activation triggered the Ser-1015 phosphorylation of EGFR, with similar kinetics to previously reported Ser-1047 phosphorylation, in a tyrosine kinase-independent manner. In addition, phosphorylation around Ser-1015 triggered endocytosis of a dimer deficient mutant of EGFR. The non-canonical endocytosis of EGFR monomers was primarily controlled by the region around Ser-1015 only; however, Ser-1047 on internalized EGFR was equally phosphorylated. The results of the present study provide mechanistic evidence for the cisplatin-induced non-canonical regulation of EGFR.

SELECTION OF CITATIONS
SEARCH DETAIL
...