Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
JPGN Rep ; 4(4): e372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034430

ABSTRACT

Δ4-3-Oxosteroid 5ß-reductase (AKR1D1) deficiency typically causes severe cholestasis occurs in newborns, leading to death unless patients are treated with primary bile acids. However, we encountered an AKR1D1 deficiency patient treated with only ursodeoxycholic acid who had cholestasis until about 1 year of age but then grew up healthy without further treatment. We also have been following other healthy patients with AKR1D1 mutation who have never developed cholestasis and have not been treated. However, reports are few, involving 3 patients. To better understand and clinically manage a diverse group of patients with AKR1D1 mutation who do not develop potentially fatal cholestasis in the neonatal period, ongoing accumulation and study of informative cases is needed.

2.
Metabolites ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557268

ABSTRACT

We investigated the age-dependent changes in urinary excretion of glucuronidated bile acids at the C-3 position. Bile acid 3-glucuronides accounted for 0.5% of urinary bile acids in neonates, and the proportion of bile acid 3-glucuronides plateaued at 1-3 years of age. The 3-glucuronides of secondary bile acids were first secreted at 3 months of age, the same time as the establishment of the gut bacterial flora in infants. A considerable portion of bile acid 3-glucuronides were present as non-amidated forms. Our results indicate dynamic hepatic enzyme activity in which the levels of uridine 5'-diphospho-glucuronosyltransferases (UGTs) differ by age group, with higher glucuronidation activity of UGTs towards nonamidated bile acids than amidated bile acids.

3.
Gut Microbes ; 14(1): 2132903, 2022.
Article in English | MEDLINE | ID: mdl-36343662

ABSTRACT

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which the sterol rings are "kinked", as well as small quantities of A/B-trans oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the "flat" bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Animals , Humans , Firmicutes/metabolism , Phylogeny , Lithocholic Acid/metabolism , Deoxycholic Acid/metabolism
4.
J Lipid Res ; 63(10): 100275, 2022 10.
Article in English | MEDLINE | ID: mdl-36089004

ABSTRACT

Although most bile acids (BAs) in feces are present in noncovalent forms that can be extracted with ethanol, non-negligible amounts of saponifiable BAs are also present. It is a major concern that such saponifiable BAs are routinely omitted from fecal BA measurements. We compared the BA profiles of healthy stools that were obtained with/without alkaline hydrolysis and found that as much as 29.7% (2.1-67.7%) of total BAs were saponifiable. Specifically, alkaline treatment led to significant elevations of isodeoxycholic acid (isoDCA) and isolithocholic acid (isoLCA) concentrations, suggesting that considerable proportions of isoDCA and isoLCA were esterified. Precursor ion scan data from LC/MS suggested the presence of long-chain FA-linked BAs. We chemically synthesized a series of fatty acid 3ß-acyl conjugates of isoDCA and isoLCA as analytical standards and analyzed their fecal profiles from newborns to adults (n = 64) by LC/MS. FA-conjugated isobile acids (FA-isoBAs) were constantly present from 2 years of age to adulthood. C16- and C18-chain FA-isoBA esters were predominantly found regardless of age, but small amounts of acetic acid esters were also found. FA-isoBA concentrations were not correlated to fecal FA concentrations. Interestingly, there were some adults who did not have FA-isoBAs. Gut bacteria involved in the production of FA-isoBAs have not been identified yet. The present study provides insight into the establishment of early gut microbiota and the interactive development of esterified BAs.The contribution of FA-isoBAs to gut physiology and their role in pathophysiologic conditions such as inflammatory bowel disease are currently under investigation.


Subject(s)
Bile Acids and Salts , Hydroxy Acids , Infant, Newborn , Adult , Humans , Bile Acids and Salts/analysis , Hydroxy Acids/analysis , Feces/chemistry , Fatty Acids , Lithocholic Acid/analysis , Ethanol
5.
Nature ; 599(7885): 458-464, 2021 11.
Article in English | MEDLINE | ID: mdl-34325466

ABSTRACT

Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases1-3. Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium. These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis.


Subject(s)
Bacteria/metabolism , Biosynthetic Pathways , Centenarians , Gastrointestinal Microbiome , Lithocholic Acid/analogs & derivatives , Lithocholic Acid/biosynthesis , 3-Hydroxysteroid Dehydrogenases/metabolism , Aged, 80 and over , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Bacteria/classification , Bacteria/enzymology , Bacteria/isolation & purification , Cholestenone 5 alpha-Reductase/metabolism , Feces/chemistry , Feces/microbiology , Female , Gram-Positive Bacteria/metabolism , Humans , Lithocholic Acid/metabolism , Male , Mice , Symbiosis
6.
Hepatol Commun ; 5(4): 629-633, 2021 04.
Article in English | MEDLINE | ID: mdl-33860121

ABSTRACT

Organic anion transporting polypeptide (OATP) 1B1 (gene, solute carrier organic anion transporter family member 1B1 [SLCO1B1]) and OATP1B3 (SLCO1B3) serve as transporters for hepatic uptake of important endogenous substances and several commonly prescribed drugs. Inactivation of both proteins together causes Rotor syndrome. How this OATP1B1/1B3 defect disturbs bile acid (BA) metabolism is largely unknown. In this study, we performed detailed BA analysis in 3 patients with genetically diagnosed Rotor syndrome. We found that BAs glucuronidated at the C-3 position (BA-3G) accounted for 50% or more of total BAs in these patients. In contrast but similarly to healthy controls, only trace amounts of BA-3G were detected in patients with constitutional indocyanine green excretory defect (OATP1B3 deficiency) or sodium-taurocholate cotransporting polypeptide (NTCP; gene, solute carrier family 10 member 1 [SLC10A1]) deficiency. Therefore, substantial amounts of BA-3G are synthesized in hepatocytes. The cycling pathway of BA-3G, consisting of excretion from upstream hepatocytes and uptake by downstream hepatocytes by OATP1B1/1B3 may exist to reduce the burden on upstream hepatocytes. Conclusion: Detailed BA analysis revealed glucuronidated bile acidemia in patients with Rotor syndrome. Further exploration of the physiologic role of glucuronidated BAs is necessary.


Subject(s)
Bile Acids and Salts/blood , Hepatocytes/metabolism , Hyperbilirubinemia, Hereditary/metabolism , Organic Anion Transporters/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Aged , Aged, 80 and over , Child , Female , Hepatocytes/pathology , Humans , Hyperbilirubinemia, Hereditary/blood , Hyperbilirubinemia, Hereditary/pathology , Infant , Male , Middle Aged , Organic Anion Transporters/blood , Solute Carrier Organic Anion Transporter Family Member 1B3/blood
7.
Sci Rep ; 11(1): 4986, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33654186

ABSTRACT

Diagnosis of biliary atresia (BA) can involve uncertainties. In the present prospective multicenter study, we considered whether urinary oxysterols represent a useful marker for diagnosis of BA in Japanese children. Subjects under 6 months old at 7 pediatric centers in Japan were prospectively enrolled, including patients with cholestasis and healthy controls (HC) without liver disease. Patients with cholestasis constituted 2 groups representing BA patients and others with cholestasis from other causes (non-BA). We quantitatively analyzed 7 oxysterols including 4ß-, 20(S)-, 22(S)-, 22(R)-, 24(S)-, 25-, and 27-hydroxycholesterol by liquid chromatography/electrospray ionization-tandem mass spectrometry. Enrolled subjects included 14 with BA (median age 68 days; range 26-170) and 10 non-BA cholestatic controls (59; 14-162), as well as 10 HC (57; 25-120). Total urinary oxysterols were significantly greater in BA (median, 153.0 µmol/mol creatinine; range 24.1-486.7; P < 0.001) and non-BA (36.2; 5.8-411.3; P < 0.05) than in HC (2.7; 0.8-7.6). In patients with BA, urinary 27-hydroxycholesterol (3.61; 0.42-11.09; P < 0.01) was significantly greater than in non-BA (0.71; 0-5.62). In receiver operating characteristic (ROC) curve analysis for distinguishing BA from non-BA, the area under the ROC curve for urinary 27-hydroxycholesterol was 0.83. In conclusion, this first report of urinary oxysterol analysis in patients with BA indicated that 27-hydroxycholesterol may be a useful marker for distinguishing BA from other causes of neonatal cholestasis.


Subject(s)
Biliary Atresia/urine , Hydroxycholesterols/urine , Biomarkers/urine , Female , Humans , Infant , Infant, Newborn , Japan , Male , Mass Spectrometry , Prospective Studies
8.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33430766

ABSTRACT

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Subject(s)
Bacteria/classification , Bacterial Proteins/genetics , Berberine/administration & dosage , Bile Acids and Salts/metabolism , RNA, Ribosomal, 16S/genetics , Animals , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Berberine/pharmacology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , Gastrointestinal Microbiome/drug effects , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Male , Metabolomics , Mice , Sequence Analysis, RNA , Species Specificity
9.
Dig Dis Sci ; 66(11): 3885-3892, 2021 11.
Article in English | MEDLINE | ID: mdl-33385262

ABSTRACT

BACKGROUND: We encountered 7 Japanese patients with bile acid synthesis disorders (BASD) including 3ß-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase (3ß-HSD) deficiency (n = 3), Δ4-3-oxosteroid 5ß-reductase (5ß-reductase) deficiency (n = 3), and oxysterol 7α-hydroxylase deficiency (n = 1) over 21 years between 1996 and 2017. AIM: We aimed to clarify long-term outcome in the 7 patients with BASD as well as long-term efficacy of chenodeoxycholic acid (CDCA) treatment in the 5 patients with 3ß-HSD deficiency or 5ß-reductase deficiency. METHODS: Diagnoses were made from bile acid and genetic analyses. Bile acid analysis in serum and urine was performed using gas chromatography-mass spectrometry. Clinical and laboratory findings and bile acid profiles at diagnosis and most recent visit were retrospectively obtained from medical records. Long-term outcome included follow-up duration, treatments, growth, education/employment, complications of treatment, and other problems. RESULTS: Medians with ranges of current patient ages and duration of CDCA treatment are 10 years (8 to 43) and 10 years (8 to 21), respectively. All 7 patients, who had homozygous or compound heterozygous mutations in the HSD3B7, SRD5B1, or CYP7B1 gene, are currently in good health without liver dysfunction. In the 5 patients with CDCA treatment, hepatic function gradually improved following initiation. No adverse effects were noted. CONCLUSIONS: We concluded that CDCA treatment is effective in 3ß-HSD deficiency and 5ß-reductase deficiency, as cholic acid has been in other countries. BASD carry a good prognosis following early diagnosis and initiation of long-term CDCA treatment.


Subject(s)
Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/genetics , Bile Acids and Salts/biosynthesis , Chenodeoxycholic Acid/therapeutic use , Cytochrome P450 Family 7/metabolism , Oxidoreductases/genetics , Steroid Hydroxylases/metabolism , Adolescent , Adult , Child , Cytochrome P450 Family 7/genetics , Gene Expression Regulation, Enzymologic/drug effects , Genetic Predisposition to Disease , Humans , Japan , Mutation , Steroid Hydroxylases/genetics , Young Adult
10.
J Lipid Res ; 61(12): 1629-1644, 2020 12.
Article in English | MEDLINE | ID: mdl-33008924

ABSTRACT

NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.


Subject(s)
Cytochrome P450 Family 7/metabolism , Insulin Resistance , Non-alcoholic Fatty Liver Disease/metabolism , Steroid Hydroxylases/metabolism , Animals , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/pathology , Oxysterols/metabolism
11.
Steroids ; 164: 108730, 2020 12.
Article in English | MEDLINE | ID: mdl-32961239

ABSTRACT

Bile acid compositions are known to change dramatically after birth with aging. However, no reports have described the transition of conjugated urinary bile acids from the neonatal period to adulthood, and such findings would noninvasively offer insights into hepatic function. The aim of this study was to investigate differences in bile acid species, conjugation rates, and patterns, and to pool characteristics for age groups. We measured urinary bile acids in spot urine samples from 92 healthy individuals ranging from birth to 58 years old using liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS). Sixty-six unconjugated and conjugated bile acids were systematically determined. After birth, urinary bile acids dramatically changed from fetal (i.e., Δ4-, Δ5-, and polyhydroxy-bile acids) to mature (i.e., CA and CDCA) bile acids. Peak bile acid excretion was 6-8 days after birth, steadily decreasing thereafter. A major change in bile acid conjugation pattern (taurine to glycine) also occurred at 2-4 months old. Our data provide important information regarding transitions of bile acid biosynthesis, including conjugation. The data also support the existence of physiologic cholestasis in the neonatal period and the establishment of the intestinal bacterial flora in infants.


Subject(s)
Bile Acids and Salts/urine , Adolescent , Adult , Bile Acids and Salts/standards , Child , Child, Preschool , Chromatography, Liquid/methods , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Reference Standards , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Young Adult
12.
Steroids ; 158: 108605, 2020 06.
Article in English | MEDLINE | ID: mdl-32084504

ABSTRACT

Steryl glucosides (SGs) and acylated steryl glucosides (ASGs) are phytochemicals found in plant-based foods and are known as bioactive compounds with potential health benefits. These include anti-inflammatory properties, anti-diabetic effects, and modulation of immunoregulatory functions as well as having cholesterol lowering effects. In this study, three major SGs, i.e., glucosides of ß-sitosterol, stigmasterol, and campesterol, were synthesized and used as standards for measurement of their contents in rice bran (RB)-based fermented food (FBRA) utilizing Aspergillus oryzae and raw material (RM). The compounds were quantified using liquid chromatography/electrospray ionization-tandem mass spectrometry. It was found that ß-sitosteryl glucoside was most abundant among the analyzed glucosides in both samples, and the contents of each SG in FBRA decreased about 35% from those of RM. In contrast to SGs, the contents of ASGs in FBRA increased 1.5-fold during the fermentation process as evidenced by an alkaline hydrolysis. The present results suggest that the FBRA might have greater beneficial effects than the RM, since ASGs have shown to have more potent cholesterol lowering effects and stronger anti-diabetic properties than SGs.


Subject(s)
Fermented Foods/analysis , Glycosides/analysis , Oryza/chemistry , Sterols/analysis , Chromatography, Liquid , Glycosides/metabolism , Molecular Conformation , Oryza/metabolism , Spectrometry, Mass, Electrospray Ionization , Sterols/metabolism , Tandem Mass Spectrometry
13.
Gut Microbes ; 11(3): 381-404, 2020 05 03.
Article in English | MEDLINE | ID: mdl-31177942

ABSTRACT

The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.


Subject(s)
Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Bile Acids and Salts/metabolism , Cecum/microbiology , Metabolome , Transcriptome , Animals , Bacteroides/genetics , Bacteroides/metabolism , Bilophila/genetics , Bilophila/metabolism , Cholic Acids/metabolism , Clostridium/genetics , Clostridium/metabolism , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics , Germ-Free Life , Humans , Mice , Mice, Inbred C57BL , Microbiota , Operon , RNA-Seq , Up-Regulation
14.
Pediatr Int ; 61(5): 489-494, 2019 May.
Article in English | MEDLINE | ID: mdl-30921489

ABSTRACT

BACKGROUND: In pediatric patients with cholestasis of unknown cause, inborn errors of bile acid (BA) synthesis (IEBAS) may be considered. For the initial screening for IEBAS, clarification of the urine BA profile is essential. The transportation of urine in a frozen state via air delivery, however, is laborious and costly. This study assessed the feasibility of using dried urine spots (DUS) to establish a more convenient and affordable method of IEBAS screening. METHODS: We created DUS using urine samples from patients with 3ß-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase deficiency (3ß-HSD) and Δ4-3-oxo-steroid 5ß-reductase deficiency as standard preparations. We started accepting DUS specimens by regular mail. RESULTS: The ratio of unusual to usual BA is essential for the initial detection of IEBAS, and the recovery rates of abnormal BA were acceptable. The recovery rate of Δ4-BA on day 28 decreased to 31.8% at 25°C, and to 19.6% at 37°C. Therefore, the sending of DUS should be avoided under conditions of high temperature. Of a total of 49 children with cholestasis, eight new patients were diagnosed with IEBAS using this screening method. CONCLUSION: The mailing screening system is expected to facilitate the shipment, from regions outside of Japan, of samples for IEBAS screening.


Subject(s)
3-Hydroxysteroid Dehydrogenases/deficiency , Bile Acids and Salts/urine , Cholestasis/etiology , Metabolism, Inborn Errors/diagnosis , Oxidoreductases/deficiency , Urinalysis/methods , Child, Preschool , Feasibility Studies , Female , Humans , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/complications , Neonatal Screening/methods
15.
Biol Pharm Bull ; 41(4): 597-603, 2018.
Article in English | MEDLINE | ID: mdl-29607932

ABSTRACT

Unusual bile acids (1ß-hydroxylated bile acids), particularly 1ß-hydroxyl-cholic acid (CA-1ß-ol) and 1ß-hydroxyl-chenodeoxycholic acid (CDCA-1ß-ol), have been detected in the urine of infants. These acids are conjugated with amino acids, such as taurine, and are then excreted mainly via the urine. CA-1ß-ol and CDCA-1ß-ol are the predominant bile acids during infancy and are present in relatively large amounts in the urine. However, the biosynthetic pathway of 1ß-hydroxylated bile acids in infants remains unclear. To investigate the biosynthetic pathway of 1ß-hydroxylated bile acids during infancy, we performed a metabolic reaction using infant hepatocytes at 3 months after delivery. Glyco- and tauro-CA-1ß-ol were identified by LC/tandem mass spectrometry (MS/MS) analysis of the extracted culture medium incubated with cholic acids (CAs). Further, we identified that ketoconazole suppressed CA 1ß-hydroxylation and that the CYP3A subfamily was the primary group of enzymes responsible for CA-1ß-ol formation. The present study provides new information about the biosynthetic pathway of 1ß-hydroxylated bile acids during infancy.


Subject(s)
Cholic Acids/metabolism , Hepatocytes/metabolism , Adult , Cells, Cultured , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Hydroxylation , Infant , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
16.
Intern Med ; 57(11): 1611-1616, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29434128

ABSTRACT

Cerebrotendinous xanthomatosis (CTX) is a rare, autosomal recessive, inborn disruption in bile acid synthesis characterized by severe systemic xanthomas, cataracts and neurological injuries occurring before adolescence without elevation of the serum cholesterol or triglyceride levels. CTX is caused by a deficiency of the mitochondrial enzyme sterol 27-hydroxylase, which is encoded by the CYP27A1 gene. We herein report a 50-year-old Japanese woman with late-onset CTX who had no relevant symptoms before the development of bilateral Achilles tendon xanthomas in middle age. A genetic analysis revealed a compound heterozygous mutation in the CYP27A1 gene with a previously known missense mutation (NM_000784.3:c.1421 G>A) and a novel frame shift mutation of NM_000784.3:c.1342_1343insCACC.


Subject(s)
Cholestanetriol 26-Monooxygenase/genetics , Mutation/genetics , Xanthomatosis, Cerebrotendinous/diagnosis , Achilles Tendon , Female , Frameshift Mutation , Humans , Middle Aged , Mutation, Missense , Xanthomatosis
17.
J Oleo Sci ; 66(7): 745-751, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28626134

ABSTRACT

3-oxohexadecanoyl-CoA was synthesized for the study of D-bifunctional protein (EC 4. 2. 1. 107, EC 4. 2. 1. 119, EC 1. 1. 1. n12) and L-bifunctional protein (EC 4. 2. 1. 17, EC 5. 3. 3. 8, EC 1. 1. 1. 35). First, tetradecanal was subjected to the Reformatsky reaction with ethyl bromoacetate, and the product was then converted into ethyl 3-oxohexadecanoate. After acetalization of the 3-oxo ester with ethylene glycol, 3,3-ethlenedioxyhexadecanoic acid was obtained by alkaline hydrolysis. The acid was condensed with coenzyme A (CoA) by the mixed anhydride method, and the resulting CoA ester was deprotected with 4 M HCl to obtain 3-oxohexadecanoyl-CoA. In addition, the behavior of the CoA ester under several conditions of high-performance liquid chromatography (HPLC) was also investigated. We established separation detection of (R)-3-hydroxyhexadecanoyl-CoA, (S)-3-hydroxyhexadecaboyl-CoA, 3-oxohexadecanoyl-CoA, and trans-2-hexadecenoyl-CoA.


Subject(s)
Acyl Coenzyme A/chemical synthesis , Chromatography, High Pressure Liquid , Peroxisomal Multifunctional Protein-2 , Acetates/chemistry , Acyl Coenzyme A/isolation & purification , Aldehydes/chemistry , Ethylene Glycol/chemistry , Hydrolysis , Organic Chemistry Phenomena , Oxidation-Reduction
18.
Clin Chim Acta ; 446: 76-81, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25887994

ABSTRACT

BACKGROUND: The primary bile acids found in meconium vary with the gestational age of the fetus and the intestinal location of the meconium. We determined the composition of bile acids in samples that were collected from the gallbladder and intestine. METHODS: The bile-acid profiles of intestinal contents and the gallbladder were obtained from nine fetuses who died from abortion or respiratory failure within 72 h after birth. Intestinal content samples were collected from seven intestinal locations. The bile-acid profiles of meconium were also obtained from seven full-term live births for comparison. The profiles were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS: The bile acids in meconium collected from stillborn and live births were mainly chenodeoxycholic acid and cholic acid, conjugated with taurine, glycine, and sulfate. The same bile acids were found in the gallbladder, except that sulfate was not found. CONCLUSIONS: Sulfate-conjugated bile acid is found in urine, but rarely in stool. In this study, the gallbladder bile acid contained no sulfate conjugates, but these were present in intestinal contents and meconium. These results indicate that sulfate-conjugated bile acids are not excreted into the intestine through the biliary tract but originate from swallowed amniotic fluid that contains fetal urine.


Subject(s)
Bile Acids and Salts/analysis , Fetus/chemistry , Gallbladder/chemistry , Meconium/chemistry , Tandem Mass Spectrometry/statistics & numerical data , Bile Acids and Salts/metabolism , Chromatography, Liquid/statistics & numerical data , Female , Fetus/metabolism , Gallbladder/metabolism , Humans , Infant, Newborn , Infant, Premature/metabolism , Male , Meconium/metabolism , Pregnancy , Spectrometry, Mass, Electrospray Ionization/statistics & numerical data
19.
J Lipid Res ; 55(5): 978-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24627129

ABSTRACT

We have developed a simple and accurate HPLC method for measurement of fecal bile acids using phenacyl derivatives of unconjugated bile acids, and applied it to the measurement of fecal bile acids in cirrhotic patients. The HPLC method has the following steps: 1) lyophilization of the stool sample; 2) reconstitution in buffer and enzymatic deconjugation using cholylglycine hydrolase/sulfatase; 3) incubation with 0.1 N NaOH in 50% isopropanol at 60°C to hydrolyze esterified bile acids; 4) extraction of bile acids from particulate material using 0.1 N NaOH; 5) isolation of deconjugated bile acids by solid phase extraction; 6) formation of phenacyl esters by derivatization using phenacyl bromide; and 7) HPLC separation measuring eluted peaks at 254 nm. The method was validated by showing that results obtained by HPLC agreed with those obtained by LC-MS/MS and GC-MS. We then applied the method to measuring total fecal bile acid (concentration) and bile acid profile in samples from 38 patients with cirrhosis (17 early, 21 advanced) and 10 healthy subjects. Bile acid concentrations were significantly lower in patients with advanced cirrhosis, suggesting impaired bile acid synthesis.


Subject(s)
Bile Acids and Salts/analysis , Chromatography, High Pressure Liquid/methods , Feces/chemistry , Fibrosis , Gas Chromatography-Mass Spectrometry , Bile Acids and Salts/chemistry , Case-Control Studies , Female , Humans , Male , Middle Aged
20.
Chem Pharm Bull (Tokyo) ; 61(5): 559-66, 2013.
Article in English | MEDLINE | ID: mdl-23470629

ABSTRACT

A method has been developed for the measurement of transport activities in membrane vesicles obtained from Sf9 cells for 3ß-hydroxy-Δ(5)-bile acids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Calibration curves for the bile acids were linear over the range of 10 to 2000 pmol/mL, and the detection limit was less than 1 pmol/mL for 3ß-hydroxy-Δ(5)-bile acids using selected reaction monitoring analysis. The analytical method was applied to measurements of transport activities in membrane vesicles obtained from human multidrug resistance-associated protein 2-, 3-, and human bile salt export pump-expressing Sf9 cells for conjugated 3ß-hydroxy-Δ(5)-bile acids. The present study demonstrated that human multidrug resistance-associated protein 3 vesicles accepted conjugated 3ß-hydroxy-Δ(5)-bile acids along with common bile acids such as glycocholic acid and taurolithocholic acid 3-sulfate.


Subject(s)
Bile Acids and Salts/analysis , Bile Acids and Salts/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Animals , Bile Acids and Salts/metabolism , Chromatography, High Pressure Liquid , Humans , Molecular Conformation , Multidrug Resistance-Associated Proteins/metabolism , Sf9 Cells , Spodoptera , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...