Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 117: 209-221, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35725072

ABSTRACT

Water disinfection is an essential process that provides safe water by inactivating pathogens that cause waterborne diseases. However, disinfectants react with organic matter naturally present in water, leading to the formation of disinfection by-products (DBPs). Multi-analyte methods based on mass spectrometry (MS) are preferred to quantify multiple DBP classes at once however, most require extensive sample pre-treatment and significant resources. In this study, two analytical methods were developed for the quantification of 32 regulated and unregulated DBPs. A purge and trap (P&T) coupled with gas chromatography mass spectrometry (GC-MS) method was optimized that automated sample pre-treatment and analyzed volatile and semi-volatile compounds, including trihalomethanes (THMs), iodinated trihalomethanes (I-THMs), haloacetonitriles (HANs), haloketones (HKTs) and halonitromethanes (HNMs). LOQs were between 0.02-0.4 µg/L for most DBPs except for 8 analytes that were in the low µg/L range. A second method with liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed for the quantification of 10 haloacetic acids (HAAs) with a simple clean-up and direct injection. The LC-MS/MS direct injection method has the lowest detection limits reported (0.2-0.5 µg/L). Both methods have a simple sample pre-treatment, which make it possible for routine analysis. Hyperchlorination and uniform formation conditions (UFC) formation potential tests with chlorine were evaluated with water samples containing high and low TOC. Hyperchlorination formation potential test maximized THMs and HAAs while UFC maximized HANs. Ascorbic acid was found to be an appropriate quencher for both analytical methods. Disinfected drinking water from four water utilities in Alberta, Canada were also evaluated.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Chromatography, Liquid , Disinfectants/analysis , Disinfection/methods , Drinking Water/analysis , Halogenation , Tandem Mass Spectrometry , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
2.
Anal Chem ; 87(18): 9429-35, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26308256

ABSTRACT

Stainless steel (SS) particles were demonstrated as a novel useful support for a water stationary phase in packed column supercritical fluid chromatography using a CO2 mobile phase. Separations employed flame ionization detection, and the system was operated over a range of temperatures and pressures. Retention times reproduced well with RSD values of 2.6% or less. Compared to analogous separations employing a water stationary phase coated onto a SS capillary column, the packed column method provided separations that were about 10× faster, with nearly 8-fold larger analyte retention factors, while maintaining good peak shape and comparable column efficiency. Under normal operating conditions, the packed column contains about 131 ± 4 µL/m of water phase (around a 5% m/m coating), which is over 25× greater than the capillary column and also affords it a 20-fold larger sample capacity. Several applications of the packed column system are examined, and the results indicate that it is a useful alternative to the capillary column mode, particularly where analyte loads or sample matrix interference is a concern. Given its high sample capacity, this packed column method may also be useful to explore on a more preparative scale in the future.

3.
J Sep Sci ; 38(9): 1618-24, 2015 May.
Article in English | MEDLINE | ID: mdl-25683640

ABSTRACT

The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless-steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 µL/m of water phase is deposited uniformly inside of a typical 250 µm internal diameter 316 stainless-steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm(2) regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless-steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless-steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless-steel columns were more resistant to etching than 304 stainless-steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless-steel columns used with this supercritical fluid chromatography technique.

4.
J Chromatogr A ; 1250: 80-4, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22552197

ABSTRACT

The characteristics of using Subcritical Water Extraction (SWE) to recover Fluoxetine-Hydrochloride from both standard solutions and the contents of commercial capsule formulations were investigated. Analysis of solutions and extracts was done by HPLC with UV detection at 254 nm. Standard solutions of Fluoxetine-Hydrochloride were exposed to a variety of SWE operating conditions, including temperatures from 125 to 275°C and periods ranging from 5 to 30 min. Fluoxetine-Hydrochloride could be quantitatively recovered from standard solutions (1.0mg/mL) that were heated up to 175°C for 30 min, up to 200°C for 15 min, or up to 225°C for 10 min. At higher temperatures and/or times, Fluoxetine-Hydrochloride recoveries were generally incomplete and often produced decomposition by-products during the process. By comparison, the concentration of Fluoxetine-Hydrochloride in the standard solution had relatively little effect on recovery. Considering these parameters, an SWE method was developed to extract Fluoxetine-Hydrochloride from the contents of Prozac(®) capsules. It was found that Fluoxetine-Hydrochloride could be quantitatively extracted from the capsule contents in 8 min at a temperature of 200°C using 3.5 mL of water as the extraction solvent. Gelatinization of the starch excipient in the capsule contents was also observed to occur temporarily during the capsule extractions, before ultimately disappearing again. The period of this phenomenon was dependent on both temperature and sample size. The results indicate that SWE can be a very useful method for Fluoxetine-Hydrochloride extraction and suggest that it may be interesting to explore other pharmaceuticals using this method as well.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fluoxetine/isolation & purification , Water/chemistry , Capsules/chemistry , Drug Stability , Fluoxetine/analysis , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...