Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 9(15): 3754-3758, 2018 Apr 21.
Article in English | MEDLINE | ID: mdl-29780507

ABSTRACT

Thousands of terpenes have been identified to date. However, only two classes of enzymes are known to be involved in their biosynthesis, and each class has characteristic amino-acid motifs. We recently identified a novel large-terpene (C25/C30/C35) synthase, which shares no motifs with known enzymes. To elucidate the molecular mechanism of this enzyme, we determined the crystal structure of a large-ß-prene synthase from B. alcalophilus (BalTS). Surprisingly, the overall structure of BalTS is similar to that of the α-domain of class I terpene synthases although their primary structures are totally different from each other. Two novel aspartate-rich motifs, DYLDNLxD and DY(F,L,W)IDxxED, are identified, and mutations of any one of the aspartates eliminate its enzymatic activity. The present work leads us to propose a new subclass of terpene synthases, class IB, which is probably responsible for large-terpene biosynthesis.

2.
Chembiochem ; 18(19): 1910-1913, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28881085

ABSTRACT

Onoceroids are a group of triterpenes biosynthesized from squalene or dioxidosqualene by cyclization from both termini. We previously identified a bifunctional triterpene/sesquarterpene cyclase (TC) that constructs a tetracyclic scaffold from tetraprenyl-ß-curcumene (C35 ) but a bicyclic scaffold from squalene (C30 ) in the first reaction. TC also accepts the bicyclic intermediate as a substrate and generates tetracyclic and pentacyclic onoceroids in the second reaction. In this study, we analyzed the catalytic mechanism of an onoceroid synthase by using mutated enzymes. TCY167A produced an unnatural tricyclic triterpenol, but TCY167L , TCY167F , and TCY167W formed small quantities of tricyclic compounds, which suggested that the bulk size at Y167 contributed to termination of the cyclization of squalene at the bicyclic step. Our findings provide insight into the unique catalytic mechanism of TC, which triggers different cyclization modes depending on the substrate. These findings may facilitate the large-scale production of an onoceroid for which natural sources are limited.


Subject(s)
Biocatalysis , Intramolecular Transferases/metabolism , Squalene/metabolism , Tyrosine/metabolism , Bacillus/enzymology , Cyclization , Molecular Structure , Squalene/chemistry
3.
Chembiochem ; 16(9): 1371-7, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25882275

ABSTRACT

We performed functional analysis of recombinant enzymes and analysis of isoprenoid metabolites in Bacillus clausii to gain insights into the biosynthesis of rare terpenoid groups of sesterterpenes, head-to-tail triterpenes, and sesquarterpenes. We have identified an (all-E)-isoprenyl diphosphate synthase (E-IDS) homologue as a trifunctional geranylfarnesyl diphosphate (GFPP)/hexaprenyl diphosphate (HexPP)/heptaprenyl diphosphate (HepPP) synthase. In addition, we have redefined the function of a tetraprenyl-ß-curcumene synthase homologue as that of a trifunctional sesterterpene/triterpene/sesquarterpene synthase. This study has revealed that GFPP, HexPP, and HepPP, intermediates of two isoprenoid pathways (acyclic terpenes and menaquinones), are biosynthesized by one trifunctional E-IDS. In addition, GFPP/HexPP and HepPP are the primary substrates for the biosynthesis of acyclic terpenes and menaquinone-7, respectively.


Subject(s)
Bacillus/enzymology , Multifunctional Enzymes/metabolism , Sesterterpenes/metabolism , Terpenes/metabolism , Triterpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Bacillus/chemistry , Bacillus/metabolism , Biosynthetic Pathways , Dimethylallyltranstransferase/metabolism , Sesterterpenes/chemistry , Terpenes/chemistry , Triterpenes/chemistry , Vitamin K 2/chemistry , Vitamin K 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...