Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 14(12): 3506-3537, 2019 12.
Article in English | MEDLINE | ID: mdl-31748753

ABSTRACT

Tissue-clearing techniques are powerful tools for biological research and pathological diagnosis. Here, we describe advanced clear, unobstructed brain imaging cocktails and computational analysis (CUBIC) procedures that can be applied to biomedical research. This protocol enables preparation of high-transparency organs that retain fluorescent protein signals within 7-21 d by immersion in CUBIC reagents. A transparent mouse organ can then be imaged by a high-speed imaging system (>0.5 TB/h/color). In addition, to improve the understanding and simplify handling of the data, the positions of all detected cells in an organ (3-12 GB) can be extracted from a large image dataset (2.5-14 TB) within 3-12 h. As an example of how the protocol can be used, we counted the number of cells in an adult whole mouse brain and other distinct anatomical regions and determined the number of cells transduced with mCherry following whole-brain infection with adeno-associated virus (AAV)-PHP.eB. The improved throughput offered by this protocol allows analysis of numerous samples (e.g., >100 mouse brains per study), providing a platform for next-generation biomedical research.


Subject(s)
Brain/diagnostic imaging , Neuroimaging/methods , Optical Imaging/methods , Animals , Coloring Agents , Fluorescent Dyes , Imaging, Three-Dimensional/methods , Indicators and Reagents , Mice
2.
Cell Rep ; 24(8): 2196-2210.e9, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30134179

ABSTRACT

We describe a strategy for developing hydrophilic chemical cocktails for tissue delipidation, decoloring, refractive index (RI) matching, and decalcification, based on comprehensive chemical profiling. More than 1,600 chemicals were screened by a high-throughput evaluation system for each chemical process. The chemical profiling revealed important chemical factors: salt-free amine with high octanol/water partition-coefficient (logP) for delipidation, N-alkylimidazole for decoloring, aromatic amide for RI matching, and protonation of phosphate ion for decalcification. The strategic integration of optimal chemical cocktails provided a series of CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis) protocols, which efficiently clear mouse organs, mouse body including bone, and even large primate and human tissues. The updated CUBIC protocols are scalable and reproducible, and they enable three-dimensional imaging of the mammalian body and large primate and human tissues. This strategy represents a future paradigm for the rational design of hydrophilic clearing cocktails that can be used for large tissues.


Subject(s)
Indicators and Reagents/chemistry , Humans , Hydrophobic and Hydrophilic Interactions
3.
Nat Neurosci ; 21(4): 625-637, 2018 04.
Article in English | MEDLINE | ID: mdl-29507408

ABSTRACT

A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.


Subject(s)
Brain Mapping , Brain/cytology , Imaging, Three-Dimensional , Microscopy/methods , Neurons/physiology , Single-Cell Analysis/methods , Age Factors , Animals , Brain/growth & development , Indicators and Reagents , Male , Mice , Mice, Inbred C57BL , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...