Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202414786, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39295286

ABSTRACT

The selenides of platinum-group metals (PGMs) are emerging as promising catalysts for diverse electrochemical reactions. To date, most studies have focused on single metal or bimetallic systems, whereas the preparation of a high-entropy (HE) selenide consisting of five or more PGM elements holds the promise to further enhance catalytic performance by introducing abundant active sites with various local coordination environments and electronic structures. Herein, we report for the first time the synthesis of PGM-based HE-Selenide (HE-Se) nanoparticles with a unique amorphous structure. The atomic metal-Se coordination and the presence of short-range order were thoroughly revealed. It is further shown that the amorphous HE-Se can be facilely transformed into a single-phase crystalline HE-Se with a cubic structure by thermal annealing. Catalytically, the amorphous HE-Se showed better acidic hydrogen evolution activity over monometallic PGM-based selenides and the crystalline counterpart, demonstrating the advantages of high-entropy configuration and amorphous structure. Our findings may pave the way toward the synthesis and property exploration of amorphous PGM-based selenides with tunable compositions.

2.
Nature ; 631(8021): 521-525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961304

ABSTRACT

Atomic-scale observations of a specific local area would be considerably beneficial when exploring new fundamental materials and devices. The development of hardware-type aberration correction1,2 in electron microscopy has enabled local structural observations with atomic resolution3-5 as well as chemical and vibration analysis6-8. In magnetic imaging, however, atomic-level spin configurations are analysed by electron energy-loss spectroscopy by placing samples in strong magnetic fields9-11, which destroy the nature of the magnetic ordering in the samples. Although magnetic-field-free observations can visualize the intrinsic magnetic fields of an antiferromagnet by unit-cell averaging12, directly observing the magnetic field of an individual atomic layer of a non-uniform structure is challenging. Here we report that the magnetic fields of an individual lattice plane inside materials with a non-uniform structure can be observed under magnetic-field-free conditions by electron holography with a hardware-type aberration corrector assisted by post-digital aberration correction. The magnetic phases of the net magnetic moments of (111) lattice planes formed by opposite spin orderings between Fe3+ and Mo5+ in a ferrimagnetic double-perovskite oxide (Ba2FeMoO6) were successfully observed. This result opens the door to direct observations of the magnetic lattice in local areas, such as interfaces and grain boundaries, in many materials and devices.

3.
Chem Sci ; 15(20): 7560-7567, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784732

ABSTRACT

Solid-solution alloys based on platinum group metals and p-block metals have attracted much attention due to their promising potential as materials with a continuously fine-tunable electronic structure. Here, we report on the first synthesis of novel solid-solution RuSn alloy nanoparticles (NPs) by electrochemical cyclic voltammetry sweeping of RuSn@SnOx NPs. High-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy maps confirmed the random and homogeneous distribution of Ru and Sn elements in the alloy NPs. Compared with monometallic Ru NPs, the RuSn alloy NPs showed improved hydrogen evolution reaction (HER) performance. The overpotentials of Ru0.94Sn0.06 NPs/C and Ru0.87Sn0.13 NPs/C to achieve a current density of 10 mA cm-2 were 43.41 and 33.19 mV, respectively, which are lower than those of monometallic Ru NPs/C (53.53 mV) and commercial Pt NPs/C (55.77 mV). The valence-band structures of the NPs investigated by hard X-ray photoelectron spectroscopy demonstrated that the d-band centre of RuSn NPs shifted downward compared with that of Ru NPs. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analyses indicated that in the RuSn alloy NPs, charge transfer occurs from Sn to Ru, which was considered to result in a downward shift of the d-band centre in RuSn NPs and to regulate the adsorption energy of intermediate Hads effectively, and thus enable the RuSn solid-solution alloy NPs to exhibit excellent HER catalytic properties.

4.
Nanoscale ; 16(19): 9311-9316, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38655766

ABSTRACT

The properties of solids could be largely affected by their crystal structures. We achieved, for the first time, the phase control of solid-solution RuIn nanoparticles (NPs) from face-centred cubic (fcc) to hexagonal close-packed (hcp) crystal structures by hydrogen heat treatment. The effect of the crystal structure of RuIn alloy NPs on the catalytic performance in the hydrogen evolution reaction (HER) was also investigated. In the hcp RuIn NPs, enhanced HER catalytic performance was observed compared to the fcc RuIn NPs and monometallic Ru NPs. The intrinsic electronic structures of the NPs were investigated by valence-band X-ray photoelectron spectroscopy (VB-XPS). The d-band centre of hcp RuIn NPs obtained from VB-XPS was deeper than that of fcc RuIn NPs and monometallic Ru NPs, which is considered to enable the hcp RuIn NPs to exhibit enhanced HER catalytic performance.

5.
Appl Microsc ; 54(1): 4, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630318

ABSTRACT

In this study, we investigate the effectiveness of noise reduction in electron holography, based on the wavelet hidden Markov model (WHMM), which allows the reasonable separation of weak signals from noise. Electron holography observations from a Nd2Fe14B thin foil showed that the noise reduction method suppressed artificial phase discontinuities generated by phase retrieval. From the peak signal-to-noise ratio, it was seen that the impact of denoising was significant for observations with a narrow spacing of interference fringes, which is a key parameter for the spatial resolution of electron holography. These results provide essential information for improving the precision of electron holography studies.

6.
Microscopy (Oxf) ; 73(4): 301-307, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38549513

ABSTRACT

The charge state of supported metal catalysts is the key to understand the elementary processes involved in catalytic reactions. However, high-precision charge analysis of the metal catalysts at the atomic level is experimentally challenging. To address this critical challenge, high-sensitivity electron holography has recently been successfully applied for precisely measuring the elementary charges on individual platinum nanoparticles supported on a titanium dioxide surface. In this review, we introduce the latest advancements in high-precision charge analysis and discuss the mechanisms of charge transfer at the metal-support interface. The development of charge measurements is entering a new era, and charge analyses under conditions closer to practical working environments, such as real-time, real-space, and reactive gas environments, are expected to be realized in the near future.

7.
Microscopy (Oxf) ; 73(1): 22-30, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37243701

ABSTRACT

Perovskite oxides, ABO3, are potential catalysts for the oxygen evolution reaction, which is important in the production of hydrogen as a sustainable energy resource. Optimizing the chemical composition of such oxides by substitution or doping with additional elements is an effective approach to improving the activity of such catalysts. Here, we characterized the crystal and electronic structures of fluorine-doped La0.5Sr0.5CoO3-δ particles using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). High-resolution STEM imaging demonstrated the formation of a disordered surface phase caused by fluorine doping. In addition, spatially resolved EELS data showed that fluorine anions were introduced into the interiors of the particles and that Co ions near the surfaces were slightly reduced by fluorine doping in conjunction with the loss of oxygen ions. Peak fitting of energy-loss near-edge structure data demonstrated an unexpected nanostructure in the vicinity of the surface. An EELS characterization comprising elemental mapping together with an energy-loss near-edge structure analysis indicated that this nanostructure could not be assigned to Co-based materials but rather to the solid electrolyte BaF2. Complementary structural and electronic characterizations using STEM and EELS as demonstrated herein evidently have the potential to play an increasingly important role in elucidating the nanostructures of functional materials.

8.
ChemSusChem ; 16(22): e202300942, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37877342

ABSTRACT

An important part of realizing a carbon-neutral society using ammonia will be the development of an inexpensive yet efficient catalyst for ammonia synthesis under mild reaction conditions (<400 °C, <10 MPa). Here, we report Fe/K(3)/MgO, fabricated via an impregnation method, as a highly active catalyst for ammonia synthesis under mild reaction conditions (350 °C, 1.0 MPa). At the mentioned conditions, the activity of Fe/K(3)/MgO (17.5 mmol h-1 gcat -1 ) was greater than that of a commercial fused iron catalyst (8.6 mmol h-1 gcat -1 ) currently used in the Haber-Bosch process. K doping was found to increase the ratio of Fe0 on the surface and turnover frequency of Fe in our Fe/K(3)/MgO catalyst. In addition, increasing the pressure to 3.0 MPa at the same temperature led to a significant improvement of the ammonia synthesis rate to 29.6 mmol h-1 gcat -1 , which was higher than that of two more expensive, benchmark Ru-based catalysts, which are also potential alternative catalysts. A kinetics analysis revealed that the addition of K enhanced the ammonia synthesis activity at ≥300 °C by changing the main adsorbed species from NH to N which can accelerate dissociative adsorption of nitrogen as the rate limiting step in ammonia synthesis.

9.
J Am Chem Soc ; 145(31): 17136-17142, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37471524

ABSTRACT

Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.

10.
Chem Commun (Camb) ; 59(62): 9485-9488, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37439509

ABSTRACT

We first report the synthesis of B2-structured indium-platinum group metal high-entropy intermetallic nanoparticles (In-PGM HEI NPs). The synthesis was achieved by a wet-chemistry method and subsequent heat treatment. The crystal structure of these NPs is unique in the coexistence of completely orderly arranged indium and disorderly arranged PGMs.

11.
J Am Chem Soc ; 145(17): 9454-9458, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37093264

ABSTRACT

The use of nanotubes in the solution state is crucial not only for the exploration of physical and chemical behaviors at the molecular level but also for application such as thin-film fabrication. Surface modification is generally used to solubilize carbon nanotubes (CNTs) and various synthetic nanotubes; however, this method may affect the surface properties of the original nanotubes, and the detailed crystal structure obtained after modification is unclear. Here, we report the synthesis of a crystalline and soluble metal-organic nanotube consisting of a cationic tubular framework and an anion with a long alkyl chain. The nanotubular structures are formed not only in the solid state but also in the solution state, as confirmed by an X-ray structural analysis, optical measurements, and electron microscopy studies. This nanotube system is realized in different states without any surface modification, which is quite different from typical CNTs and synthetic nanotubes. In addition, self-assembled crystalline bundles are directly observed using transmission electron microscopy (TEM) for the first time in a metal-organic nanotube system. The bundle structures are also confirmed by atomic force microscopy (AFM) observations of thin nanotube films. We envisage a systematic design of such soluble metal-organic nanotubes that will enable direct observation of mass transport behavior in channels of bundles or a single nanotube, as well as a wide range of thin-film applications.

12.
Microscopy (Oxf) ; 72(4): 343-352, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-36420894

ABSTRACT

This paper proposes a method that provides a phase image related to the demagnetization field (Hd) within a thin-foil permanent magnet using electron holography. The observation of Hd remains a significant challenge because electron holography in principle allows only imaging of the magnetic flux density (B), which is a mixture of the contributions from magnetization (M), stray magnetic field (Hs) outside of the specimen and Hd inside of the specimen. The phase map approximating Hd, which was determined by processing of the electron holography observation from a Nd2Fe14B single-crystalline specimen, showed a good agreement with the prediction by micromagnetic theory. With respect to permanent magnets, this method can be applied to examinations about the coercivity mechanism, which is sensitive to the demagnetization field. Graphical Abstract.

13.
Science ; 378(6616): 202-206, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36227985

ABSTRACT

A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.

14.
Nat Commun ; 13(1): 5307, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167802

ABSTRACT

Crystalline metals can have large theoretical elastic strain limits. However, a macroscopic block of conventional crystalline metals practically suffers a very limited elastic deformation of <0.5% with a linear stress-strain relationship obeying Hooke's law. Here, we report on the experimental observation of a large tensile elastic deformation with an elastic strain of >4.3% in a Cu-based single crystalline alloy at its bulk scale at room temperature. The large macroscopic elastic strain that originates from the reversible lattice strain of a single phase is demonstrated by in situ microstructure and neutron diffraction observations. Furthermore, the elastic reversible deformation, which is nonhysteretic and quasilinear, is associated with a pronounced elastic softening phenomenon. The increase in the stress gives rise to a reduced Young's modulus, unlike the traditional Hooke's law behaviour. The experimental discovery of a non-Hookean large elastic deformation offers the potential for the development of bulk crystalline metals as high-performance mechanical springs or for new applications via "elastic strain engineering."

15.
Microscopy (Oxf) ; 70(6): 510-518, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34101814

ABSTRACT

An automated hologram acquisition system for big-data analysis and for improving the statistical precision of phase analysis has been upgraded with automated particle detection technology. The coordinates of objects in low-magnification images are automatically detected using zero-mean normalized cross-correlation with preselected reference images. In contrast with the conventional scanning acquisitions from the whole area of a microgrid and/or a thin specimen, the new method allows efficient data collections only from the desired fields of view including the particles. The acquisition time of the cubic/triangular nanoparticles that were observed was shortened by about one-fifty eighth that of the conventional scanning acquisition method because of efficient data collections. The developed technology can improve statistical precision in electron holography with shorter acquisition time and is applicable to the analysis of electromagnetic fields for various kinds of nanoparticles.

16.
Microscopy (Oxf) ; 70(5): 442-449, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33730158

ABSTRACT

An image identification method was developed with the aid of a deep convolutional neural network (CNN) and applied to the analysis of inorganic particles using electron holography. Despite significant variation in the shapes of α-Fe2O3 particles that were observed by transmission electron microscopy, this CNN-based method could be used to identify isolated, spindle-shaped particles that were distinct from other particles that had undergone pairing and/or agglomeration. The averaging of images of these isolated particles provided a significant improvement in the phase analysis precision of the electron holography observations. This method is expected to be helpful in the analysis of weak electromagnetic fields generated by nanoparticles showing only small phase shifts.

17.
Microscopy (Oxf) ; 70(1): 17-23, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32572498

ABSTRACT

This review examines methods of magnetic flux density measurements from the narrow grain boundary (GB) regions, the thickness of which is of the order of nanometers, produced in Nd-Fe-B-based sintered magnets. Despite of the complex crystallographic microstructure and the significant stray magnetic field of the sintered magnet, recent progress in electron holography allowed for the determination of the intrinsic magnetic flux density due to the GB which is embedded in the polycrystalline thin-foil. The methods appear to be useful as well for intensive studies about interface magnetism in a variety of systems.

18.
Microscopy (Oxf) ; 69(2): 59-60, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32157306
19.
Microscopy (Oxf) ; 69(2): 132-139, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32115651

ABSTRACT

An automated acquisition system for collecting a large number of electron holograms, to improve the statistical precision of phase analysis, was developed. A technique for shifting the electron beam in combination with stage movement allows data to be acquired over a wide area of a TEM-specimen grid. Undesired drift in the hologram position, which may occur during the hologram acquisition, can be corrected in real time by automated detection of the interference-fringe region in an image. To demonstrate the usefulness of the developed automated hologram acquisition system, gold nanoparticles dispersed on a carbon foil were observed with a 1.2-MV atomic resolution holography electron microscope. The system could obtain 1024 holograms, which provided phase maps for more than 500 nanoparticles with a lateral resolution of 0.14 nm, in just 1 h. The observation results revealed an anomalous increase in mean inner potential for a particle size smaller than 4 nm. The developed automated hologram acquisition system can be applied to improve the precision of phase measurement by averaging many phase images, as demonstrated by single particle analysis for biological entities. Moreover, the system makes it possible to study electrostatic potential of catalysts and other functional nanoparticles at atomic resolution.

20.
Microscopy (Oxf) ; 68(4): 342-347, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-30860260

ABSTRACT

Self-assembled dendronized CdS nanoparticles have been attracting considerable attention because of their photoluminescence properties depending on annealing treatments. In this study, their annealing-induced self-assembled structure was investigated via scanning transmission electron microscopy; thin foil specimens of self-assembled dendronized CdS nanoparticles were prepared by ultramicrotomy and the STEM images revealed their ordered structure and the effect of the annealing treatment. In addition, a structural order belonging to the P213 space group was identified via an autocorrelation analysis. The results indicated that this structural order could be achieved only over a few tens of nanometers.

SELECTION OF CITATIONS
SEARCH DETAIL