Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chromosome Res ; 32(2): 8, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717688

ABSTRACT

Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.


Subject(s)
Centromere , Chromosomes, Plant , DNA, Satellite , Myristica , DNA, Satellite/genetics , Centromere/genetics , Myristica/chemistry , Myristica/genetics , Histones/genetics , Tubulin/genetics , In Situ Hybridization, Fluorescence , Plant Proteins/genetics
2.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38294316

ABSTRACT

Indium phosphide (InP) quantum dots (QDs) have recently garnered considerable interest in the design of bioprobes due to their non-toxic nature and excellent optical properties. Several attempts for the conjunction of InP QDs with various entities such as organic dyes and dye-labeled proteins have been reported, while that with fluorescent proteins remains largely uncharted. This study reports the development of a Förster resonance energy transfer pair comprising glutathione-capped InP/GaP/ZnS QDs [InP(G)] and the fluorescent protein mCherry. Glutathione on InP(G) undergoes effective bioconjugation with mCherry consisting of a hexahistidine tag, and the nonradiative energy transfer is investigated using steady-state and time-resolved measurements. Selective one-photon excitation of InP(G) in the presence of mCherry shows a decay of the emission of the QDs and a concomitant growth of acceptor emission. Time-resolved investigations prove the nonradiative transfer of energy between InP(G) and mCherry. Furthermore, the scope of two-photon-induced energy transfer between InP(G) and mCherry is investigated by exciting the donor in the optical transparency range. The two-photon absorption is confirmed by the quadratic relationship between the emission intensity and the excitation power. In general, near-infrared excitation provides a path for effective light penetration into the tissues and reduces the photodamage of the sample. The two-photon-induced energy transfer in such assemblies could set the stage for a wide range of biological and optoelectronic applications in the foreseeable future.


Subject(s)
Coloring Agents , Fluorescence Resonance Energy Transfer , Indium , Phosphines , Glutathione , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...