Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 582(7811): 271-276, 2020 06.
Article in English | MEDLINE | ID: mdl-32499640

ABSTRACT

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Subject(s)
Calcineurin/metabolism , Cell Proliferation , Homeodomain Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myocytes, Cardiac/cytology , Animals , Animals, Newborn , Female , Gene Deletion , Gene Expression Regulation , Heart/physiology , Homeodomain Proteins/genetics , Male , Mice , Myocardium/cytology , Protein Binding , Regeneration
3.
Cell Biosci ; 5: 39, 2015.
Article in English | MEDLINE | ID: mdl-26221532

ABSTRACT

BACKGROUND: Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment, known as niche in the endosteal regions of the bone marrow. This stem cell niche with low oxygen tension requires HSCs to adopt a unique metabolic profile. We have recently demonstrated that mouse long-term hematopoietic stem cells (LT-HSCs) utilize glycolysis instead of mitochondrial oxidative phosphorylation as their main energy source. However, the metabolic phenotype of human hematopoietic progenitor and stem cells (HPSCs) remains unknown. RESULTS: We show that HPSCs have a similar metabolic phenotype, as shown by high rates of glycolysis, and low rates of oxygen consumption. Fractionation of human mobilized peripheral blood cells based on their metabolic footprint shows that cells with a low mitochondrial potential are highly enriched for HPSCs. Remarkably, low MP cells had much better repopulation ability as compared to high MP cells. Moreover, similar to their murine counterparts, we show that Hif-1α is upregulated in human HPSCs, where it is transcriptionally regulated by Meis1. Finally, we show that Meis1 and its cofactors Pbx1 and HoxA9 play an important role in transcriptional activation of Hif-1α in a cooperative manner. CONCLUSIONS: These findings highlight the unique metabolic properties of human HPSCs and the transcriptional network that regulates their metabolic phenotype.

4.
Nature ; 523(7559): 226-30, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26098368

ABSTRACT

Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1α) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1α is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific α myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.


Subject(s)
Myocardium/cytology , Myocytes, Cardiac/cytology , Recombinant Fusion Proteins/metabolism , Animals , Cell Hypoxia , Cell Proliferation/genetics , Female , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinases/genetics , Recombinases/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
5.
Antioxid Redox Signal ; 21(11): 1660-73, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25000143

ABSTRACT

SIGNIFICANCE: Utilizing oxygen (O2) through mitochondrial oxidative phosphorylation enables organisms to generate adenosine triphosphate (ATP) with a higher efficiency than glycolysis, but it results in increased reactive oxygen species production from mitochondria, which can result in stem cell dysfunction and senescence. RECENT ADVANCES: In the postnatal organism, the hematopoietic system represents a classic example of the role of stem cells in cellular turnover and regeneration. However, in other organs such as the heart, both the degree and source of cellular turnover have been heavily contested. CRITICAL ISSUES: Although recent evidence suggests that the major source of the limited cardiomyocyte turnover in the adult heart is cardiomyocyte proliferation, the identity and potential role of undifferentiated cardiac progenitor cells remain controversial. Several types of cardiac progenitor cells have been identified, and several studies have identified an important role of redox and metabolic regulation in survival and differentiation of cardiac progenitor cells. Perhaps a simple way to approach these controversies is to focus on the multipotentiality characteristics of a certain progenitor population, and not necessarily its ability to give rise to all cell types within the heart. In addition, it is important to note that cycling cells in the heart may express markers of differentiation or may be truly undifferentiated, and for the purpose of this review, we will refer to these cycling cells as progenitors. FUTURE DIRECTIONS: We propose that hypoxia, redox signaling, and metabolic phenotypes are major regulators of cardiac renewal, and may prove to be important therapeutic targets for heart regeneration.


Subject(s)
Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Regeneration , Signal Transduction , Animals , Antioxidants/metabolism , Cell Differentiation , Cellular Microenvironment , Humans , Hypoxia , Oxidative Stress , Reactive Oxygen Species/metabolism , Stem Cells/cytology , Stem Cells/metabolism
6.
Cell ; 157(3): 565-79, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766806

ABSTRACT

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Subject(s)
Cell Cycle Checkpoints , Myocytes, Cardiac/cytology , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Animals , Cell Proliferation/drug effects , DNA Damage , Free Radical Scavengers/pharmacology , Mice , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Zebrafish
7.
Nature ; 497(7448): 249-253, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23594737

ABSTRACT

The neonatal mammalian heart is capable of substantial regeneration following injury through cardiomyocyte proliferation. However, this regenerative capacity is lost by postnatal day 7 and the mechanisms of cardiomyocyte cell cycle arrest remain unclear. The homeodomain transcription factor Meis1 is required for normal cardiac development but its role in cardiomyocytes is unknown. Here we identify Meis1 as a critical regulator of the cardiomyocyte cell cycle. Meis1 deletion in mouse cardiomyocytes was sufficient for extension of the postnatal proliferative window of cardiomyocytes, and for re-activation of cardiomyocyte mitosis in the adult heart with no deleterious effect on cardiac function. In contrast, overexpression of Meis1 in cardiomyocytes decreased neonatal myocyte proliferation and inhibited neonatal heart regeneration. Finally, we show that Meis1 is required for transcriptional activation of the synergistic CDK inhibitors p15, p16 and p21. These results identify Meis1 as a critical transcriptional regulator of cardiomyocyte proliferation and a potential therapeutic target for heart regeneration.


Subject(s)
Cell Cycle Checkpoints , Homeodomain Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neoplasm Proteins/metabolism , Alleles , Animals , Animals, Newborn , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Heart/anatomy & histology , Heart/physiology , Homeodomain Proteins/genetics , Male , Mice , Myeloid Ecotropic Viral Integration Site 1 Protein , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Regeneration , Transcriptional Activation
8.
Glob Cardiol Sci Pract ; 2013(3): 212-21, 2013.
Article in English | MEDLINE | ID: mdl-24689023

ABSTRACT

Lower vertebrates, such as newt and zebrafish, retain a robust cardiac regenerative capacity following injury. Recently, our group demonstrated that neonatal mammalian hearts have a remarkable regenerative potential in the first few days after birth. Although adult mammals lack this regenerative potential, it is now clear that there is measurable cardiomyocyte turnover that occurs in the adult mammalian heart. In both neonatal and adult mammals, proliferation of pre-existing cardiomyocytes appears to be the underlying mechanism of myocyte turnover. This review will highlight the advances and landmark studies that opened new frontiers in cardiac regeneration.

9.
J Biol Chem ; 286(3): 2343-53, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21078662

ABSTRACT

Strategies to induce fetal hemoglobin (HbF) synthesis for the treatment of ß-hemoglobinopathies probably involve protein modifications by histone deacetylases (HDACs) that mediate γ-globin gene regulation. However, the role of individual HDACs in globin gene expression is not very well understood; thus, the focus of our study was to identify HDACs involved in γ-globin activation. K562 erythroleukemia cells treated with the HbF inducers hemin, trichostatin A, and sodium butyrate had significantly reduced mRNA levels of HDAC9 and its splice variant histone deacetylase-related protein. Subsequently, HDAC9 gene knockdown produced dose-dependent γ-globin gene silencing over an 80-320 nm range. Enforced expression with the pTarget-HDAC9 vector produced a dose-dependent 2.5-fold increase in γ-globin mRNA (p < 0.05). Furthermore, ChIP assays showed HDAC9 binding in vivo in the upstream Gγ-globin gene promoter region. To determine the physiological relevance of these findings, human primary erythroid progenitors were treated with HDAC9 siRNA; we observed 40 and 60% γ-globin gene silencing in day 11 (early) and day 28 (late) progenitors. Moreover, enforced HDAC9 expression increased γ-globin mRNA levels by 2.5-fold with a simultaneous 7-fold increase in HbF. Collectively, these data support a positive role for HDAC9 in γ-globin gene regulation.


Subject(s)
Erythroid Cells/metabolism , Gene Expression Regulation , Histone Deacetylases/metabolism , Repressor Proteins/metabolism , gamma-Globins/biosynthesis , Butyrates/pharmacology , Gene Knockdown Techniques , Gene Silencing/drug effects , Hemin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Humans , Hydroxamic Acids/pharmacology , K562 Cells , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Repressor Proteins/genetics , Response Elements/genetics , gamma-Globins/genetics
10.
Blood Cells Mol Dis ; 42(1): 16-24, 2009.
Article in English | MEDLINE | ID: mdl-18829352

ABSTRACT

Five major beta-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, beta-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the beta-locus, which consists of five functional beta-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the beta-locus using DNA samples from healthy African Americans with either normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the beta-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Ggamma-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high-density SNP mapping may be required to accurately define beta-haplotypes that correlate with the different clinical phenotypes observed in SCD.


Subject(s)
Anemia, Sickle Cell/genetics , DNA Mutational Analysis , Haplotypes , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , beta-Globins/genetics , Black or African American/genetics , Gene Frequency , Genotype , Hemoglobin A/genetics , Hemoglobin, Sickle/genetics , Humans , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...