Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(3): 030502, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777607

ABSTRACT

We investigate cat codes that can correct multiple excitation losses and identify two types of logical errors: bit-flip errors due to excessive excitation loss and dephasing errors due to quantum backaction from the environment. We show that selected choices of logical subspace and coherent amplitude significantly reduce dephasing errors. The trade-off between the two major errors enables optimized performance of cat codes in terms of minimized decoherence. With high coupling efficiency, we show that one-way quantum repeaters with cat codes feature a boosted secure communication rate per mode when compared to conventional encoding schemes, showcasing the promising potential of quantum information processing with continuous variable quantum codes.

2.
Sci Rep ; 6: 20463, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26876670

ABSTRACT

Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥ 1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

3.
Phys Rev Lett ; 112(25): 250501, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014798

ABSTRACT

Quantum repeaters (QRs) provide a way of enabling long distance quantum communication by establishing entangled qubits between remote locations. In this Letter, we investigate a new approach to QRs in which quantum information can be faithfully transmitted via a noisy channel without the use of long distance teleportation, thus eliminating the need to establish remote entangled links. Our approach makes use of small encoding blocks to fault-tolerantly correct both operational and photon loss errors. We describe a way to optimize the resource requirement for these QRs with the aim of the generation of a secure key. Numerical calculations indicate that the number of quantum memory bits at each repeater station required for the generation of one secure key has favorable polylogarithmic scaling with the distance across which the communication is desired.

SELECTION OF CITATIONS
SEARCH DETAIL
...