Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 226(Suppl_1)2023 04 25.
Article in English | MEDLINE | ID: mdl-37073956

ABSTRACT

Studying the motion of cheetahs - especially in the wild - is a technically challenging endeavour that pushes the limits of field biomechanics methodology. Consequently, it provides an interesting example of the scientific symbiosis that exists between experimental biology and the technological disciplines that support it. This article uses cheetah motion research as a basis to review the past, present and likely future of field biomechanics. Although the focus is on a specific animal, the methods and challenges discussed are broadly relevant to the study of terrestrial locomotion. We also highlight the external factors contributing to the evolution of this technology, including recent advancements in machine learning, and the influx of interest in cheetah biomechanics from the legged robotics community.


Subject(s)
Acinonyx , Robotics , Animals , Biomechanical Phenomena , Locomotion , Motion
2.
J Chem Phys ; 158(11): 114704, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948811

ABSTRACT

The time-of-flight method is a fundamental approach for characterizing the transport properties of semiconductors. Recently, the transient photocurrent and optical absorption kinetics have been simultaneously measured for thin films; pulsed-light excitation of thin films should give rise to non-negligible in-depth carrier injection. Yet, the effects of in-depth carrier injection on the transient currents and optical absorption have not yet been elucidated theoretically. Here, by considering the in-depth carrier injection in simulations, we found a 1/t1-α/2 initial time (t) dependence rather than the conventional 1/t1-α dependence under a weak external electric field, where α < 1 is the index of dispersive diffusion. The asymptotic transient currents are not influenced by the initial in-depth carrier injection and follow the conventional 1/t1+α time dependence. We also present the relation between the field-dependent mobility coefficient and the diffusion coefficient when the transport is dispersive. The field dependence of the transport coefficients influences the transit time in the photocurrent kinetics dividing two power-law decay regimes. The classical Scher-Montroll theory predicts that a1 + a2 = 2 when the initial photocurrent decay is given by 1/ta1 and the asymptotic photocurrent decay is given by 1/ta2 . The results shed light on the interpretation of the power-law exponent of 1/ta1 when a1 + a2 ≠ 2.

3.
Chempluschem ; 86(10): 1476-1486, 2021 10.
Article in English | MEDLINE | ID: mdl-34669265

ABSTRACT

This work reports a series of covalently linked hybrids comprising 5,10,15,20-tetraaryl-5,15-diazaporphyrinoids (M-TADAP; M = Ni, Zn, Cu) and amines. M-TADAP-amine hybrids were prepared via the metal-templated cyclization of the corresponding metal(II)-dipyrrin complexes and redox reactions on the DAP unit. In the UV/vis/near-IR absorption spectra of the hybrids containing an 18π-electron DAP ring, broad charge-transfer bands were observed, reflecting the electron-donating property of the para-aminophenyl groups and the electron-accepting property of the 18π TADAP dication. The electrochemical behavior of the M-TADAP-amine hybrids was strongly dependent on the structure of the peripheral amine units. Further electrochemical oxidation of the hybrids bearing N-Ph groups conceivably generated amine-centered radicals, which sequentially underwent irreversible coupling to form benzidine-linked M-TADAP polymer films. The Ni-TADAP-benzidine polymer exhibited the electric conductivity of 1×10-3  S m-1 .

SELECTION OF CITATIONS
SEARCH DETAIL
...