Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
Commun Chem ; 7(1): 126, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834838

ABSTRACT

Photolysis is an attractive method in organic synthesis to produce free radicals through direct bond cleavage. However, in this method, specific irradiation wavelengths of light have been considered indispensable for excitation through S0-Sn or S0-Tn transitions. Here we report the photoinduced homolysis of electronegative interelement bonds using light at wavelengths much longer than theoretically and spectroscopically predicted for the S0-Sn or S0-Tn transitions. This long-wavelength photolysis proceeds in N-Cl, N-F, and O-Cl bonds at room temperature under blue, green, and red LED irradiation, initiating diverse radical reactions. Through experimental, spectroscopic, and computational studies, we propose that this "hidden" absorption is accessible via electronic excitations from naturally occurring vibrationally excited ground states to unbonded excited states and is due to the electron-pair repulsion between electronegative atoms.

2.
Phys Chem Chem Phys ; 26(26): 18113-18128, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38895861

ABSTRACT

For the first time, we have prepared non-aggregating phthalocyanine cobalt complexes as a set of resolved positional isomers. These compounds comprise a unique test bed for the structure-properties studies, as their optical and electrochemical properties are influenced by the planarity of the phthalocyanine macrocycle, which can be controlled by the positional isomerism of the bulky aromatic substituents at the α-phthalo sites. We support our conclusions with molecular modelling studies, which show a perfect match between the calculated and experimentally determined spectral/electrochemical values. We challenge a common perception that the NMR spectra of cobalt phthalocyanines cannot be measured due to the paramagnetic nature of Co(II). We suggest instead that the key factors affecting the NMR spectral resolution are molecular aggregation and π-π stacking. These interactions are suppressed by the bulky peripheral substituents on the cobalt phthalocyanines prepared, making these isomeric compounds an excellent tool for paramagnetic NMR studies.

3.
Angew Chem Int Ed Engl ; 63(23): e202405059, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563771

ABSTRACT

We present herein the synthesis of novel pseudo-metalla-carbaporphyrinoid species (1M: M=Pd and Pt) achieved through the inner coordination of palladium(II) and platinum(II) with an acyclic N-confused tetrapyrrin analogue. Despite their tetrapyrrole frameworks being small, akin to well-known porphyrins, these species exhibit an unusually narrow HOMO-LUMO gap, resulting in an unprecedentedly low-energy absorption in the second near-infrared (NIR-II) region. Density functional theory (DFT) calculations revealed unique dπ-pπ-conjugated electronic structures involving the metal dπ-ligand pπ hybridized molecular orbitals of 1M. Magnetic circular dichroism (MCD) spectroscopy confirmed distinct electronic structures. Remarkably, the complexes feature an open-metal coordination site in the peripheral NN dipyrrin site, forming hetero-metal complexes (1Pd-BF2 and 1Pt-BF2) through boron difluoride complexation. The resulting hetero metalla-carbaporphyrinoid species displayed further redshifted NIR-II absorption, highly efficient photothermal conversion efficiencies (η; 62-65 %), and exceptional photostability. Despite the challenges associated with the theoretical and experimental assessment of dπ-pπ-conjugated metalla-aromaticity in relatively larger (more than 18π electrons) polycyclic ring systems, these organometallic planar tetrapyrrole systems could serve as potential molecular platforms for aromaticity-relevant NIR-II dyes.

4.
J Nat Prod ; 87(5): 1459-1470, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38652684

ABSTRACT

Actinomycetes are prolific producers of natural products, particularly antibiotics. However, a significant proportion of its biosynthetic gene clusters (BGCs) remain silent under typical laboratory conditions. This limits the effectiveness of conventional isolation methods for the discovery of novel natural products. Genetic interventions targeting the activation of silent gene clusters are necessary to address this challenge. Streptomyces antibiotic regulatory proteins (SARPs) act as cluster-specific activators and can be used to target silent BGCs for the discovery of new antibiotics. In this study, the expression of a previously uncharacterized SARP protein, Syo_1.56, in Streptomyces sp. RK18-A0406 significantly enhanced the production of known antimycins and led to the discovery of 12 elasnins (1-12), 10 of which were novel. The absolute stereochemistry of elasnin A1 was assigned for the first time to be 6S. Unexpectedly, Syo_1.56 seems to function as a pleiotropic rather than cluster-specific SARP regulator, with the capability of co-regulating two distinct biosynthetic pathways, simultaneously. All isolated elasnins were active against wild-type and methicillin-resistant Staphylococcus aureus with IC50 values of 0.5-20 µg/mL, some of which (elasnins A1, B2, and C1 and proelasnins A1, and C1) demonstrated moderate to strong antimalarial activities against Plasmodium falciparum 3D7. Elasnins A1, B3, and C1 also showed in vitro inhibition of the metallo-ß-lactamase responsible for the development of highly antibiotic-resistant bacterial strains.


Subject(s)
Anti-Bacterial Agents , Streptomyces , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Streptomyces/chemistry , Streptomyces/genetics , Multigene Family , Microbial Sensitivity Tests , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Molecular Structure , Methicillin-Resistant Staphylococcus aureus/drug effects , Plasmodium falciparum/drug effects
5.
Chemistry ; 30(29): e202400401, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38488227

ABSTRACT

Although second near-infrared (NIR-II, 1000-1500 nm) light has attracted considerable attention, especially for life sciences applications, the development of organic dyes with NIR-II absorption remains a formidable challenge. Herein we report the design, synthesis, and electronic properties of 20π-electron antiaromatic benziphthalocyanines (BPcs) that exhibit intense absorption bands in the NIR region. The strong, low-energy absorption of the antiaromatic BPcs is attributed to electric-dipole-allowed HOMO-LUMO transitions with narrow band gaps, enabled by the reduced structural symmetry of BPc compared with regular porphyrins and phthalocyanines. The combination of peripheral substituents and a central metal decreases the HOMO-LUMO energy gaps, leading to the extension of the absorption bands into the NIR-II region (reaching 1100 nm) under reductive conditions.

6.
Inorg Chem ; 63(14): 6296-6304, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38526299

ABSTRACT

This study explored the development of functional dyes using aluminum, focusing on aluminum-based dinuclear triple-stranded helicates, and examined the effects of substituent variations on their structural and optical properties. Key findings revealed that the modification of methyl groups to the pyrrole positions significantly extended the conjugation system, resulting in a red shift in the absorption and emission spectra. Conversely, the modification of methyl groups at the methine positions due to steric hindrances increased the torsion angle of the ligands, leading to a blue shift in the absorption and emission spectra. A common feature across all complexes was that in the excited state, one of the three ligands underwent significant structural relaxation. This led to a pronounced Stokes shift and minimal spectra overlap with high photoluminescence behaviors. Moreover, our research extended to the optical resolution of the newly synthesized complexes by analyzing the chiroptical properties of the resulting enantiomers, including their circular dichroism and circularly polarized luminescence. These insights offer valuable contributions to the design and application of novel aluminum-based functional dyes, potentially influencing a range of fields, from materials science to optoelectronics.

7.
Chem Pharm Bull (Tokyo) ; 71(6): 459-461, 2023.
Article in English | MEDLINE | ID: mdl-37258201

ABSTRACT

Organic compounds with near-IR (NIR) fluorescence have many potential applications in materials and life sciences, but the much weaker intensity of fluorescence in the NIR region than in the UV-visible region is a major obstacle. Herein we show that deuteration of phthalocyanines, a representative class of organic NIR dyes, increases both the fluorescence quantum yield and the fluorescence lifetime compared with non-deuterated phthalocyanines.


Subject(s)
Isoindoles , Fluorescence
8.
Chem Pharm Bull (Tokyo) ; 71(6): 462-465, 2023.
Article in English | MEDLINE | ID: mdl-37258202

ABSTRACT

Near-IR (NIR) organic dyes have been widely utilized in life sciences and materials science. Herein we report an unusually large NIR solvatochromism of monohydroxybenziphthalocyanine, an analogue of 18π-electron aromatic phthalocyanine in which a single isoindoline unit is replaced with a phenol ring. The solvatochromism is attributed to deprotonation of the phenol moiety in highly polar solvents, leading to the generation of a strongly NIR-absorptive 18π-electron aromatic quinoidal monoanion.


Subject(s)
Electrons , Phenol , Solvents , Phenols
10.
Commun Chem ; 6(1): 29, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765132

ABSTRACT

Nitrile derivatives are important building blocks in organic synthesis. Herein, we report the serendipitous discovery of an oxygen transfer reaction that produces hydroxyalkyl nitriles from the sequential dehydration and hydrolysis of haloalkyl amides. Product yields of up to 91% were achieved, and the phenylboronic acid was recovered as triphenylboroxine. The triphenylboroxine was reused as a catalyst without any loss of catalytic activity. A probable catalytic pathway was proposed based on control experiments and DFT calculations.

11.
Angew Chem Int Ed Engl ; 62(11): e202218358, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36670047

ABSTRACT

Activatable near-infrared (NIR) dyes responsive to external stimuli are used in medical and other applications. Here, we describe the design and synthesis of bench-stable 18π- and 20π-electron benzitetraazaporphyrins (BzTAPs) possessing redox-switchable NIR properties. X-Ray, NMR, and UV/Visible-NIR analyses revealed that 20π-electron BzTAP 1 exhibits NIR absorption and antiaromaticity with a paratropic ring-current, while 18π-electron BzTAP 2 shows weakly aromatic character with NIR inertness. Notably, the NIR-silent BzTAP 2 was readily converted to the NIR-active BzTAP 1 in the presence of mild reducing agents such as amine. The intense NIR absorption band of BzTAP 1 is in sharp contrast to the very weak absorption bands of previously reported antiaromatic porphyrinoids. Molecular orbital analysis revealed that symmetry-lowering perturbation of the 20π-electron porphyrinoid skeleton enables the HOMO-LUMO transition of 1 to be electric-dipole-allowed. BzTAPs are expected to be useful for constructing activatable NIR probes working in reductive environments.

12.
J Chem Phys ; 157(10): 104302, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36109242

ABSTRACT

Kasha's rule generally holds true for solid-state molecular systems, where the rates of internal conversion and vibrational relaxation are sufficiently higher than the luminescence rate. In contrast, in systems where plasmons and matter interact strongly, the luminescence rate is significantly enhanced, leading to the emergence of luminescence that does not obey Kasha's rule. In this work, we investigate the anti-Kasha emissions of single molecules, free-base and magnesium naphthalocyanine (H2Nc and MgNc), in a plasmonic nanocavity formed between the tip of a scanning tunneling microscope (STM) and metal substrate. A narrow-line tunable laser was employed to precisely reveal the excited-state levels of a single molecule located under the tip and to selectively excite it into a specific excited state, followed by obtaining a STM-photoluminescence (STM-PL) spectrum to reveal the energy relaxation from the state. The excitation to higher-lying states of H2Nc caused various changes in the emission spectrum, such as broadening and the appearance of new peaks, implying the breakdown of Kasha's rule. These observations indicate emissions from the vibrationally excited states in the first singlet excited state (S1) and second singlet excited state (S2), as well as internal conversion from S2 to S1. Moreover, we obtained direct evidence of electronic and vibronic transitions from the vibrationally excited states, from the STM-PL measurements of MgNc. The results obtained herein shed light on the energy dynamics of molecular systems under a plasmonic field and highlight the possibility of obtaining various energy-converting functions using anti-Kasha processes.

13.
Chem Commun (Camb) ; 58(56): 7825-7828, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35748437

ABSTRACT

Herein, a new NIR photoredox catalyst, bridged eosin Y (BEY), has been developed. Its detailed structure and NIR optical properties are clarified by using various spectroscopic methods, X-ray single-crystal structure analysis and DFT calculations. In addition, we demonstrate the photoreaction in colored reagents and high-concentration suspensions to show the advantage of NIR photoredox-catalyzed reactions.


Subject(s)
Eosine Yellowish-(YS) , Catalysis
14.
Nature ; 603(7903): 829-834, 2022 03.
Article in English | MEDLINE | ID: mdl-35354999

ABSTRACT

Given its central role in utilizing light energy, photoinduced electron transfer (PET) from an excited molecule has been widely studied1-6. However, even though microscopic photocurrent measurement methods7-11 have made it possible to correlate the efficiency of the process with local features, spatial resolution has been insufficient to resolve it at the molecular level. Recent work has, however, shown that single molecules can be efficiently excited and probed when combining a scanning tunnelling microscope (STM) with localized plasmon fields driven by a tunable laser12,13. Here we use that approach to directly visualize with atomic-scale resolution the photocurrent channels through the molecular orbitals of a single free-base phthalocyanine (FBPc) molecule, by detecting electrons from its first excited state tunnelling through the STM tip. We find that the direction and the spatial distribution of the photocurrent depend sensitively on the bias voltage, and detect counter-flowing photocurrent channels even at a voltage where the averaged photocurrent is near zero. Moreover, we see evidence of competition between PET and photoluminescence12, and find that we can control whether the excited molecule primarily relaxes through PET or photoluminescence by positioning the STM tip with three-dimensional, atomic precision. These observations suggest that specific photocurrent channels can be promoted or suppressed by tuning the coupling to excited-state molecular orbitals, and thus provide new perspectives for improving energy-conversion efficiencies by atomic-scale electronic and geometric engineering of molecular interfaces.

15.
Angew Chem Int Ed Engl ; 61(15): e202200800, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35166005

ABSTRACT

We report the synthesis of a [20]cyclophenacene-type cyclophenylene-naphthylene (CPN) belt and the enantioselective synthesis of chiral-type CPN belts (up to >99 % ee) by the cationic rhodium(I)-catalyzed intramolecular [2+2+2] cycloaddition of naphthalene-embedded cyclic polyynes. The synthesis of a depth-expanded CPN belt was also attempted, but the final intramolecular [2+2+2] cycloaddition was unsuccessful. Theoretical calculations clarified that the reactivity depends on the stability of the transition state in the initial oxidative cycloaddition step which is subject to molecular strain. The cylindrical structures of these CPN belts were confirmed by X-ray crystallographic analyses. As a result of π-extension through the introduction of naphthalenes in the chiral-type CPN belts, the anisotropy dissymmetry factors of electronic circular dichroism and circularly polarized luminescence are amplified compared with the corresponding zigzag-type chiral cyclophenylene belts.

16.
Angew Chem Int Ed Engl ; 61(6): e202115316, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34873811

ABSTRACT

The dianion and dication of tetramesityl-substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five- and six-membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene-within-an-annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X-ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the 13 C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22-π and 18-π electron outer perimeters, respectively, and 8-π electron structure at the inner ring. Notably, the dianion has an open-shell character, whereas the dication has a closed-shell ground state.

17.
Org Lett ; 23(22): 8678-8682, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34730985

ABSTRACT

In this study, we synthesized a [2]rotaxane that was both mechanically planar chiral and axially chiral, comprising a symmetrical bis-crown ether featuring a biphenyl moiety (as the macrocyclic component) and a symmetrical bis-ammonium salt (as the dumbbell-shaped component).

18.
JACS Au ; 1(11): 2080-2087, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34841419

ABSTRACT

A convoluted poly(4-vinylpyridine) cobalt(II) (P4VP-CoCl2) system was developed as a stable and reusable heterogeneous catalyst. The local structure near the Co atom was determined on the basis of experimental data and theoretical calculations. This immobilized cobalt catalyst showed high selectivity and catalytic activity in the [2 + 2 + 2] cyclotrimerization of terminal aryl alkynes. With 0.033 mol % P4VP-CoCl2, the regioselective formation of 1,3,5-triarylbenzene was realized without 1,2,4-triarylbenzene formation. Further, a multigram-scale (11 g) reaction proceeded efficiently. In addition, the polymer-supported catalyst was successfully recovered and used three times. X-ray photoelectron spectroscopy analysis of the recovered catalyst suggested that cobalt was in the +2 oxidation state. The 1,3,5-triarylbenzene derivatives were applied to the synthesis of a molecular beam electron resist and a polycyclic aromatic hydrocarbon.

19.
Sci Rep ; 11(1): 20505, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675322

ABSTRACT

We demonstrated microwave-assisted photooxidation of sulfoxides to the corresponding sulfones using ethynylbenzene as a photosensitizer. Efficiency of the photooxidation was higher under microwave irradiation than under conventional thermal heating conditions. Under the conditions, ethynylbenzene promoted the oxidation more efficiently than conventional photosensitizers benzophenone, anthracene, and rose bengal. Ethynylbenzene, whose T1 state is extremely resistant to intersystem crossing to the ground state, was suitable to this reaction because spectroscopic and related reported studies suggested that this non-thermal effect was caused by elongating lifetime of the T1 state by microwave. This is the first study in which ethynylbenzene is used as a photosensitizer in a microwave-assisted photoreaction.

20.
Science ; 373(6550): 95-98, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34210883

ABSTRACT

Ways to characterize and control excited states at the single-molecule and atomic levels are needed to exploit excitation-triggered energy-conversion processes. Here, we present a single-molecule spectroscopic method with micro-electron volt energy and submolecular-spatial resolution using laser driving of nanocavity plasmons to induce molecular luminescence in scanning tunneling microscopy. This tunable and monochromatic nanoprobe allows state-selective characterization of the energy levels and linewidths of individual electronic and vibrational quantum states of a single molecule. Moreover, we demonstrate that the energy levels of the states can be finely tuned by using the Stark effect and plasmon-exciton coupling in the tunneling junction. Our technique and findings open a route to the creation of designed energy-converting functions by using tuned energy levels of molecular systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...