Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Mol Med ; 22(9): 4183-4196, 2018 09.
Article in English | MEDLINE | ID: mdl-29921042

ABSTRACT

Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/therapy , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Apoptosis/drug effects , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Gene Expression Regulation , Heart/drug effects , Heart/physiopathology , Male , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology , Necrosis/prevention & control , Organ Culture Techniques , Oxidative Stress , Phosphorylation/drug effects , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Transport/drug effects , Rats , Rats, Wistar , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
2.
Can J Physiol Pharmacol ; 95(8): 969-976, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28683206

ABSTRACT

Diabetes mellitus, besides having deleterious effects, induces cardiac adaptation that may reduce the heart's susceptibility to ischemia-reperfusion (IR) injury. This study aimed to investigate whether changes in mitochondrial properties are involved in the mechanisms of increased resistance of the diabetic heart to IR. Adult male Wistar rats were made diabetic by a single dose of streptozotocin (65 mg·kg-1, i.p.), and on the day 8, Langendorff-perfused hearts were subjected to 30 min global ischemia and 40 min reperfusion. Baseline preischemic parameters in the diabetic hearts did not differ markedly from those in the nondiabetic controls, except for lower left ventricular developed pressure, higher mitochondrial membrane fluidity, and protein levels of manganese superoxide dismutase. On the other hand, diabetic hearts showed significantly better post-IR functional restoration and reduced arrhythmogenesis associated with lower reactive oxygen species production as compared with healthy controls. IR decreased membrane fluidity in both experimental groups; however, it led to a complete recovery of mitochondrial Mg2+-ATPase activity in diabetics in contrast to its reduction in nondiabetics. These findings indicate that the heart may become adapted to diabetes-induced alterations that might increase its tolerance to an ischemic insult. Preserved mitochondrial function might play a role in the mechanisms of the heart's resistance to IR injury in diabetics.


Subject(s)
Diabetes Mellitus, Experimental/complications , Disease Resistance , Mitochondria, Heart/pathology , Myocardial Reperfusion Injury/complications , Myocardial Reperfusion Injury/pathology , Animals , Ca(2+) Mg(2+)-ATPase/metabolism , Lipid Peroxidation , Male , Membrane Fluidity , Mitochondria, Heart/metabolism , Mitochondrial Membranes/metabolism , Myocardial Reperfusion Injury/metabolism , Rats , Rats, Wistar
3.
Can J Physiol Pharmacol ; 95(10): 1204-1212, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28683229

ABSTRACT

Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion. RPC was first described in the heart where brief ischemia in one territory led to protection in other area. Later on, RPC started to be used in patients with acute myocardial infarction, albeit with ambiguous results. It is hypothesized that the connection between the signal triggered in remote organ and protection induced in the heart can be mediated by humoral and neural pathways, as well as via systemic response to short sublethal ischemia. However, although RPC has a potentially important clinical role, our understanding of the mechanistic pathways linking the local stimulus to the remote organ remains incomplete. Nevertheless, RPC appears as a cost-effective and easily performed intervention. Elucidation of protective mechanisms activated in the remote organ may have therapeutic and diagnostic implications in the management of myocardial ischemia and lead to development of pharmacological RPC mimetics.


Subject(s)
Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Animals , Disease Models, Animal , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Myocardium/pathology , Regional Blood Flow , Signal Transduction , Time Factors , Treatment Outcome
4.
Can J Physiol Pharmacol ; 95(10): 1163-1169, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28472590

ABSTRACT

Long-lasting ischemia can result in cell loss; however, repeated episodes of brief ischemia increase the resistance of the heart against deleterious effects of subsequent prolonged ischemic insult and promote cell survival. Traditionally, it is believed that the supply of blood to the ischemic heart is associated with release of cytokines, activation of inflammatory response, and induction of necrotic cell death. In the past few years, this paradigm of passive necrosis as an uncontrolled cell death has been re-examined and the existence of a strictly regulated form of necrotic cell death, necroptosis, has been documented. This controlled cell death modality, resembling all morphological features of necrosis, has been investigated in different types of ischemia-associated heart injuries. The process of necroptosis has been found to be dependent on the activation of RIP1-RIP3-MLKL axis, which induces changes leading to the rupture of cell membrane. This pathway is activated by TNF-α, which has also been implicated in the cardioprotective signaling pathway of ischemic preconditioning. Thus, this review is intended to describe the TNF-α-mediated signaling leading to either cell survival or necroptotic cell death. In addition, some experimental data suggesting a link between heart dysfunction and the cellular loss due to necroptosis are discussed in various conditions of myocardial ischemia.


Subject(s)
Apoptosis , Myocardial Ischemia/pathology , Myocardium/metabolism , Animals , Apoptosis/drug effects , Humans , Myocardial Ischemia/metabolism , Myocardium/pathology , Necrosis , Nuclear Pore Complex Proteins/metabolism , Protein Kinases/metabolism , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL