Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Phys Med ; 80: 342-346, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33271390

ABSTRACT

In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point. For their characteristics, secondary fragments can alter the dose distribution and lead to an increase of RBE for the same delivered physical dose. Moreover, the radiobiological impact of target fragmentation is significant mostly in the region before the Bragg peak, where generally healthy tissues are present, and immediately after Bragg peak. Considering the high biological impact of those particles, especially in the case of healthy tissues or organs at risk, the inclusion of target fragmentation processes in the dose calculation of a treatment planning system can be relevant to improve the treatment accuracy and for this reason it is one of the major tasks of the MoVe IT project. In this study, Monte Carlo simulations were employed to fully characterize the mixed radiation field generated by target fragmentation in proton therapy. The dose averaged LET has been evaluated in case of a Spread Out Bragg Peak (SOBP). Starting from LET distribution, RBE has been evaluated with two different phenomenological models. In order to characterize the mixed radiation field, the production cross section has been evaluated by means of the FLUKA code. The future development of present work is to generate a MC database of fragments fluence to be included in TPS.


Subject(s)
Proton Therapy , Computer Simulation , Monte Carlo Method , Protons , Relative Biological Effectiveness
2.
Sci Rep ; 10(1): 20735, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244102

ABSTRACT

The high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient. The DP capability to detect inter-fractional changes is demonstrated by comparing the obtained fragment emission maps in different fractions of the treatments enrolled in the first ever clinical trial of such a monitoring system, performed at CNAO. The case of a CNAO patient that underwent a significant morphological change is presented in detail, focusing on the implications that can be drawn for the achievable inter-fractional monitoring DP sensitivity in real clinical conditions. The results have been cross-checked against a simulation study.


Subject(s)
Carbon/therapeutic use , Ions/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Clinical Trials as Topic , Humans , Radiometry/methods
3.
Phys Med ; 64: 45-53, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31515035

ABSTRACT

Particle therapy is a therapy technique that exploits protons or light ions to irradiate tumor targets with high accuracy. Protons and 12C ions are already used for irradiation in clinical routine, while new ions like 4He and 16O are currently being considered. Despite the indisputable physical and biological advantages of such ion beams, the planning of charged particle therapy treatments is challenged by range uncertainties, i.e. the uncertainty on the position of the maximal dose release (Bragg Peak - BP), during the treatment. To ensure correct 'in-treatment' dose deposition, range monitoring techniques, currently missing in light ion treatment techniques, are eagerly needed. The results presented in this manuscript indicate that charged secondary particles, mainly protons, produced by an 16O beam during target irradiation can be considered as candidates for 16O beam range monitoring. Hereafter, we report on the first yield measurements of protons, deuterons and tritons produced in the interaction of an 16O beam impinging on a PMMA target, as a function of detected energy and particle production position. Charged particles were detected at 90° and 60° with respect to incoming beam direction, and homogeneous and heterogeneous PMMA targets were used to probe the sensitivity of the technique to target inhomogeneities. The reported secondary particle yields provide essential information needed to assess the accuracy and resolution achievable in clinical conditions by range monitoring techniques based on secondary charged radiation.


Subject(s)
Heavy Ion Radiotherapy , Oxygen/therapeutic use , Polymethyl Methacrylate , Uncertainty
4.
Phys Med ; 65: 84-93, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31437603

ABSTRACT

Particle therapy (PT) can exploit heavy ions (such as He, C or O) to enhance the treatment efficacy, profiting from the increased Relative Biological Effectiveness and Oxygen Enhancement Ratio of these projectiles with respect to proton beams. To maximise the gain in tumor control probability a precise online monitoring of the dose release is needed, avoiding unnecessary large safety margins surroundings the tumor volume accounting for possible patient mispositioning or morphological changes with respect to the initial CT scan. The Dose Profiler (DP) detector, presented in this manuscript, is a scintillating fibres tracker of charged secondary particles (mainly protons) that will be operating during the treatment, allowing for an online range monitoring. Such monitoring technique is particularly promising in the context of heavy ions PT, in which the precision achievable by other techniques based on secondary photons detection is limited by the environmental background during the beam delivery. Developed and built at the SBAI department of "La Sapienza", within the INSIDE collaboration and as part of a Centro Fermi flagship project, the DP is a tracker detector specifically designed and planned for clinical applications inside a PT treatment room. The DP operation in clinical like conditions has been tested with the proton and carbon ions beams of Trento proton-therapy center and of the CNAO facility. In this contribution the detector performances are presented, in the context of the carbon ions monitoring clinical trial that is about to start at the CNAO centre.


Subject(s)
Heavy Ion Radiotherapy/instrumentation , Radiometry/instrumentation , Humans , Online Systems , Quality Control
5.
Phys Med Biol ; 63(5): 055018, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29265011

ABSTRACT

Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like [Formula: see text] have recently been considered as projectiles in particle therapy centres and might represent a good compromise between the linear energy transfer and the radiobiological effectiveness of [Formula: see text] ion and proton beams, allowing improved tumour control probability and minimising normal tissue complication probability. All the currently used p, [Formula: see text] and [Formula: see text] ion beams allow achieving sharp dose gradients on the boundary of the target volume, however the accurate dose delivery is sensitive to the patient positioning and to anatomical variations with respect to photon therapy. This requires beam range and/or dose release measurement during patient irradiation and therefore the development of dedicated monitoring techniques. All the proposed methods make use of the secondary radiation created by the beam interaction with the patient and, in particular, in the case of [Formula: see text] ion beams are also able to exploit the significant charged radiation component. Measurements performed to characterise the charged secondary radiation created by [Formula: see text] and [Formula: see text] particle therapy beams are reported. Charged secondary yields, energy spectra and emission profiles produced in a poly-methyl methacrylate (PMMA) target by [Formula: see text] and [Formula: see text] beams of different therapeutic energies were measured at 60° and 90° with respect to the primary beam direction. The secondary yield of protons produced along the primary beam path in a PMMA target was obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The obtained measurements are in agreement with results reported in the literature and suggests the feasibility of range monitoring based on charged secondary particle detection: the implications for particle therapy monitoring applications are also discussed.


Subject(s)
Heavy Ion Radiotherapy/adverse effects , Helium/adverse effects , Polymethyl Methacrylate/radiation effects , Radiation Monitoring/methods , Radiotherapy Planning, Computer-Assisted/methods , Dose-Response Relationship, Radiation , Humans , Scattering, Radiation
6.
Allergol Immunopathol (Madr) ; 45(5): 425-431, 2017.
Article in English | MEDLINE | ID: mdl-28236541

ABSTRACT

BACKGROUND: It is not quite well established how immune responses differ in term and preterm infants beyond the first year of life. This study aimed to evaluate aspects of the innate and adaptive immune responses in a group of preterm infants in comparison with their term peers. METHODS: In this cross-sectional study peripheral blood mononuclear cells (PBMC) were isolated from preterm and term children at age three years. Innate immune response was evaluated by the analysis of TLR receptors expression on CD11c+HLADRhigh cells and inflammatory cytokine production after PBMC stimulation with Toll like receptors (TLR) ligands. Adaptive immune response was evaluated by T cells' phenotyping and function after stimulation with polyclonal conventional T cell stimulus. CONCLUSION: We have found that the patterns of innate and adaptive immune responses at 3 years of age were not affected by the fact of the children having being born preterm or at term.


Subject(s)
Leukocytes, Mononuclear/immunology , Premature Birth/immunology , T-Lymphocytes/immunology , Adaptive Immunity , CD11c Antigen/metabolism , Child, Preschool , Cross-Sectional Studies , Cytokines/metabolism , Female , HLA-DR Antigens/metabolism , Humans , Immunity, Innate , Immunophenotyping , Infant , Infant, Premature , Inflammation Mediators/metabolism , Male , Toll-Like Receptors/metabolism
7.
Phys Med Biol ; 62(4): 1438-1455, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28114112

ABSTRACT

Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.


Subject(s)
Heavy Ion Radiotherapy/methods , Photons , Polymethyl Methacrylate/radiation effects , Scintillation Counting/methods , Carbon/chemistry , Carbon/therapeutic use , Heavy Ion Radiotherapy/adverse effects , Heavy Ion Radiotherapy/standards , Helium/chemistry , Helium/therapeutic use , Humans , Linear Energy Transfer , Proton Therapy , Relative Biological Effectiveness , Scintillation Counting/instrumentation
8.
Phys Med Biol ; 62(4): 1291-1309, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28114124

ABSTRACT

Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments-protons, deuterons, and tritons-produced by 4He ion beams of 102, 125 and 145 MeV u-1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.


Subject(s)
Helium/therapeutic use , Phantoms, Imaging , Polymethyl Methacrylate/chemistry , Radiation Monitoring/methods , Software , Algorithms , Humans , Monte Carlo Method , Protons , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness
9.
Phys Med Biol ; 61(1): 183-214, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26630246

ABSTRACT

The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.


Subject(s)
Algorithms , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Relative Biological Effectiveness
10.
Cytokine ; 61(1): 154-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23098768

ABSTRACT

Innate immunity to tumors is mediated mainly by natural killer cells (NKs) and dendritic cells (DCs). The function of these cells is coordinated by cytokines produced during the inflammatory process. NK cells are highly active against tumors, being an important source of IFN-γ. Natural killer dendritic cells (NKDCs) were recently identified as a group of hybrid cells; some studies claim that they have lytic activity, produce IFN-γ and can also stimulate antigen-specific T cells. Interleukin 21 (IL-21) regulates the proliferation capacity and cytotoxicity of NK and T cells. The main objective of this study was to investigate if IL-21 influences the frequency of NKDCs in vitro as well as IFN-γ production and also to verify if these cells could enhance the antitumor activity against B16F10 tumor model in vivo. Splenocytes from C57BL/6 mice were isolated and the DC were enriched by immunomagnetic beads and cultured for four days with recombinant IL-21 (10, 20, 40 or 100 ng/ml). NKDC population was characterized as CD11clow/medB220+NK1.1+. Expanded cells were used to treat B16F10 tumor bearing mice and tumor growth was compared between the doses of IL-21 10 ng/ml and 20 ng/ml. The results indicate that IL-21 increases the expansion of splenic NKDCs in vitro in doses of 10 ng/ml and 20 ng/ml and these cells produce IFN-γ. In vivo, cells expanded with IL-21 and injected directly into the growing tumor efficiently reduced the tumor size. Together, these results showed for the first time that IL-21 influences the biology and the effector activity of NKDCs.


Subject(s)
Cytotoxicity, Immunologic/immunology , Dendritic Cells/immunology , Interferon-gamma/immunology , Interleukins/metabolism , Killer Cells, Natural/immunology , Melanoma/immunology , Animals , CD11c Antigen , Cell Line, Tumor , Cell Proliferation , Interferon-gamma/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Receptors, Interleukin-21/biosynthesis , Receptors, Interleukin-21/metabolism , Spleen/immunology
11.
Phys Med Biol ; 57(18): 5667-78, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22935644

ABSTRACT

Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻4 sr⁻¹.


Subject(s)
Heavy Ion Radiotherapy , Polymethyl Methacrylate , Radiometry/instrumentation
12.
Med Phys ; 23(8): 1421-4, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8873040

ABSTRACT

A new system of radiation dose mapping based on laser heating of thermoluminescent dosimetric plates (TLDP) has been developed. Application of this technique to intraoperative radiotherapy (IORT) has been investigated. Preliminary results show that TLDP are a possible alternative to radiological films and ionization chambers since they provide some advantages such as 2D dose measurements with digital storage, large dynamic dose range, and easy processing.


Subject(s)
Neoplasms/diagnostic imaging , Neoplasms/surgery , Radiotherapy/instrumentation , Radiotherapy/methods , Combined Modality Therapy , Electrons , Hot Temperature , Humans , Lasers , Luminescent Measurements , Phantoms, Imaging , Radiography , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...