Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 18: 1279-1299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37882762

ABSTRACT

Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Piperidines/pharmacology , Microbial Sensitivity Tests
2.
J Biomol Struct Dyn ; 41(7): 2971-2980, 2023 04.
Article in English | MEDLINE | ID: mdl-35196960

ABSTRACT

The development of new drugs against Mycobacterium tuberculosis is an essential strategy for fighting drug resistance. Although 3-dehydroquinate dehydratase (MtDHQ) is known to be a highly relevant target for M. tuberculosis, current research shows new putative inhibitors of MtDHQ selected by a large-scale ensemble-docking strategy combining ligand- and target-based chemoinformatic methods to deep learning. Initial chemical library was reduced from 216 million to approximately 460 thousand after pharmacophore, toxicity and molecular weight filters. Final library was subjected to an ensemble-docking protocol in GOLD which selected the top 300 molecules (GHITS). GHITS displayed different structures and characteristics when compared to known inhibitors (KINH). GHITS were further screened by post-docking analysis in AMMOS2 and deep learning virtual screening in DeepPurpose. DeepPurpose predicted that a number of GHITS had comparable or better affinity for the target than KINH. The best molecule was selected by consensus ranking using GOLD, AMMOS2 and DeepPurpose scores. Molecular dynamics revealed that the top hit displayed consistent and stable binding to MtDHQ, making strong interactions with active-site loop residues. Results forward new putative inhibitors of MtDHQ and reinforce the potential application of artificial intelligence methods for drug design. This work represents the first step in the validation of these molecules as inhibitors of MtDHQ.


Subject(s)
Deep Learning , Mycobacterium tuberculosis , Ligands , Artificial Intelligence
3.
J Biomol Struct Dyn ; 41(18): 8671-8681, 2023.
Article in English | MEDLINE | ID: mdl-36255291

ABSTRACT

Piperine (PPN) is a known inhibitor of efflux pumps in Mycobacterium tuberculosis and in vitro synergism with rifampicin (RIF) has been proven. The current study evaluates the activity of PPN and synergism with RIF in rapidly and slowly growing nontuberculous mycobacteria (NTM). Also, to propose a possible mechanism of interaction of PPN with M. leprae (Mlp) RNA polymerase (RNAp). Minimal inhibitory concentration and drug combination assay was determined by resazurin microtiter assay and resazurin drug combination assay, respectively. In silico evaluation of PPN binding was performed by molecular docking and molecular dynamics (MD). PPN showed higher antimicrobial activity against rapidly growing NTM (32-128 mg/L) rather than for slowly growing NTM (≥ 256 mg/L). Further, 77.8% of NTM tested exhibited FICI ≤ 0.5 when exposed to PPN and RIF combination, regardless of growth speed. Docking and MD simulations showed a possible PPN binding site at the interface between ß and ß' subunits of RNAp, in close proximity to the trigger-helix and bridge-helix elements. MD results indicated that PPN binding hindered the mobility of these elements, which are essential for RNA transcription. We hypothesize that PPN binding might affect mycobacterial RNAp activity, and, possibly, RIF activity and that this mechanism is partially responsible for synergic behaviors with RIF reported in vitro. Communicated by Ramaswamy H. Sarma.

4.
Int J Antimicrob Agents ; 59(5): 106578, 2022 May.
Article in English | MEDLINE | ID: mdl-35367599

ABSTRACT

The objective of this systematic review was to retrieve and examine published studies related to in vitro and in vivo evaluation of disulfiram for the treatment of bacterial infections. Five scientific databases (PubMed, Embase, Scopus, Web of Science, and Latin American and Caribbean Health Sciences Literature) were searched to retrieve the maximum literature regarding the study's aim. The search strategy retrieved a total of 870 studies, of which 31 were included and 19 approached disulfiram as the primary aim and 12 included it as a secondary finding from other investigational objectives. The evidence pointed out five main aspects of pre-clinical testing regarding disulfiram antibacterial activity, namely spectrum of antimicrobial action, drug combinations, intracellular studies, animal studies and bacterial targets. Findings to emerge from this study are the observed potential of disulfiram as a non-antibiotic drug being proposed as a potential drug to contribute to the treatment of bacterial diseases usually with few treatment alternatives in the context of drug resistance. We evaluated the potency and selectivity of disulfiram, which indeed until now shows potential to be explored for use as an adjunctive chemical to antimicrobial ones. Even with the level of evidence being reserved, the potential of combining disulfiram with other drugs, already used or new to be used for the treatment of mycobacterial diseases, as well as its likely immunomodulatory effect, deserve to be further investigated. Furthermore, the copper-dependent mode of action in Gram-positive bacteria is an alternative to be explored in drug design or repurposing of chemicals.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Disulfiram/pharmacology , Disulfiram/therapeutic use , Gram-Positive Bacteria
5.
Parasitol Res ; 121(5): 1247-1280, 2022 May.
Article in English | MEDLINE | ID: mdl-35190878

ABSTRACT

Leishmaniasis affects millions of people worldwide, and available treatments have severe limitations. Natural and derivative products are significant sources of innovative therapeutic agents. Naphthoquinones are natural or synthetic chemical compounds with broad biological activity. This systematic review aimed to evaluate the potential anti-Leishmania activity of bioactive compounds derived from naphthoquinones in animal models. Conducted in accordance with PRISMA guidelines, two blocks of MeSH terms were assembled: group I, Leishmania OR Leishmaniasis; group II, Atovaquone OR Lapachol OR Beta lapachone OR Naphthoquinones. The search was performed on PubMed, Web of Science, SCOPUS, EMBASE, and Lilacs databases. Twenty-four articles were retrieved and submitted for quality assessment using the SYRCLE critical appraisal tool. The in vivo anti-Leishmania potential of naphthoquinones was evaluated in visceral and cutaneous leishmaniasis using several measurement parameters. Analyzed compounds varied in structure, association with reference drugs, and encapsulation using a drug delivery system. The study design, including treatment protocol, differed between studies. The findings of the studies in this systematic review indicate the anti-Leishmania potential of naphthoquinones in vivo, with different treatment regimens directed against different Leishmania species. The employed drug delivery systems improve the results concerning selectivity, distribution, and required therapeutic dose. The immunomodulatory action was shown to be beneficial to the host, favoring an adequate immune response against infection by Leishmania parasites since it favored Th1 responses. All studies presented a moderate to high risk of bias. These findings suggest that more studies are needed to assess the overall effectiveness and safety of these treatments.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis, Cutaneous , Naphthoquinones , Animals , Animals, Laboratory , Antiprotozoal Agents/therapeutic use , Humans , Leishmaniasis, Cutaneous/drug therapy , Naphthoquinones/chemistry , Naphthoquinones/pharmacology
6.
Immunotherapy ; 13(8): 693-721, 2021 06.
Article in English | MEDLINE | ID: mdl-33853344

ABSTRACT

Aim: Current treatments for leishmaniases are not satisfactory, thus alternatives are needed. We searched for clinical trials with immunotherapeutic approaches for patients with leishmaniasis. Materials & methods: Out of 205 articles, 24 clinical trials were selected, and eight submitted to meta-analysis. Results: A reduction in healing time was observed in patients with tegumentary leishmaniasis treated with pentavalent antimony plus granulocyte-macrophage colony-stimulating factor, and therapeutic vaccines. Overall meta-analysis indicated that immunotherapy associated with the standard chemotherapy generated a significantly reduced risk of treatment failure than the pentavalent antimony alone (p = 0.03). Conclusion: Our review confirmed the efficacy of immunotherapies for the treatment of cutaneous and visceral leishmaniasis and highlighted the importance of clinical trials using immunotherapies for leishmaniases.


Subject(s)
Antiprotozoal Agents/therapeutic use , Immunotherapy/methods , Leishmaniasis/therapy , Humans , Leishmaniasis Vaccines/therapeutic use
7.
Article in English | MEDLINE | ID: mdl-31481438

ABSTRACT

The activity of rifampin (RIF) and piperine was evaluated at the relative transcript levels of 12 efflux pumps (EPs), and an additional mechanism was proposed to be behind the synergic interactions of piperine plus RIF in Mycobacterium tuberculosis AutoDock v4.2.3 and Molegro v6 programs were used to evaluate PIP binding in M. tuberculosis RNA polymerase (RNAP). A hypothesis has been raised that piperine interferes in M. tuberculosis growth through RNAP inhibition, differently from what was previously endorsed for EP inhibition only.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Benzodioxoles/pharmacology , DNA-Directed RNA Polymerases/metabolism , Mycobacterium tuberculosis/drug effects , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Rifampin/pharmacology , Alkaloids/administration & dosage , Alkaloids/metabolism , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Benzodioxoles/administration & dosage , Benzodioxoles/metabolism , Binding Sites , Drug Synergism , Drug Therapy, Combination , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Piperidines/administration & dosage , Piperidines/metabolism , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Rifampin/administration & dosage , Rifampin/metabolism
8.
Parasitology ; 145(12): 1499-1509, 2018 10.
Article in English | MEDLINE | ID: mdl-29530102

ABSTRACT

This is a systematic review on the role of metalloproteases in the pathogenicity of the American tegumentary leishmaniasis (ATL) caused by New World Leishmania species. The review followed the PRISMA method, searching for articles in PubMed, EMBASE, LILACS and ISI Web of Science, by employing the following terms: 'leishmaniasis', 'cutaneous leishmaniasis', 'mucocutaneous leishmaniasis', 'diffuse cutaneous leishmaniasis', 'Leishmania' and 'metalloproteases'. GP63 of New World Leishmania species is a parasite metalloproteases involved in the degradation and cleavage of many biological molecules as kappa-B nuclear factor, fibronectin, tyrosine phosphatases. GP63 is capable of inhibiting the activity of the complement system and reduces the host's immune functions, allowing the survival of the parasite and its dissemination. High serological/tissue levels of host matrix metalloproteases (MMP)-9 have been associated with tissue damage during the infection, while high transcriptional levels of MMP-2 related with a satisfactory response to treatment. Host MMPs serological and tissue levels have been investigated using Western Blot, zymography, and Real Time polymerase chain reaction. GP63 detection characterizes species and virulence in promastigotes isolated from lesions samples using techniques mentioned previously. The monitoring of host MMPs levels and GP63 in Leishmania isolated from host samples could be used on the laboratory routine to predict the prognostic and treatment efficacy of ATL.


Subject(s)
Leishmania/enzymology , Leishmaniasis, Cutaneous/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Humans , Leishmania/immunology , Leishmania/pathogenicity , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Prognosis , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...