Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 34(11): 1749-1764.e7, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36223763

ABSTRACT

Pharmacologic activation of branched-chain amino acid (BCAA) catabolism is protective in models of heart failure (HF). How protection occurs remains unclear, although a causative block in cardiac BCAA oxidation is widely assumed. Here, we use in vivo isotope infusions to show that cardiac BCAA oxidation in fact increases, rather than decreases, in HF. Moreover, cardiac-specific activation of BCAA oxidation does not protect from HF even though systemic activation does. Lowering plasma and cardiac BCAAs also fails to confer significant protection, suggesting alternative mechanisms of protection. Surprisingly, activation of BCAA catabolism lowers blood pressure (BP), a known cardioprotective mechanism. BP lowering occurred independently of nitric oxide and reflected vascular resistance to adrenergic constriction. Mendelian randomization studies revealed that elevated plasma BCAAs portend higher BP in humans. Together, these data indicate that BCAA oxidation lowers vascular resistance, perhaps in part explaining cardioprotection in HF that is not mediated directly in cardiomyocytes.


Subject(s)
Amino Acids, Branched-Chain , Heart Failure , Humans , Blood Pressure , Amino Acids, Branched-Chain/metabolism , Heart , Heart Failure/metabolism , Energy Metabolism
2.
Nat Cardiovasc Res ; 1(9): 817-829, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36776621

ABSTRACT

Heart failure (HF) is a leading cause of mortality. Failing hearts undergo profound metabolic changes, but a comprehensive evaluation in humans is lacking. We integrate plasma and cardiac tissue metabolomics of 678 metabolites, genome-wide RNA-sequencing, and proteomic studies to examine metabolic status in 87 explanted human hearts from 39 patients with end-stage HF compared with 48 nonfailing donors. We confirm bioenergetic defects in human HF and reveal selective depletion of adenylate purines required for maintaining ATP levels. We observe substantial reductions in fatty acids and acylcarnitines in failing tissue, despite plasma elevations, suggesting defective import of fatty acids into cardiomyocytes. Glucose levels, in contrast, are elevated. Pyruvate dehydrogenase, which gates carbohydrate oxidation, is de-repressed, allowing increased lactate and pyruvate burning. Tricarboxylic acid cycle intermediates are significantly reduced. Finally, bioactive lipids are profoundly reprogrammed, with marked reductions in ceramides and elevations in lysoglycerophospholipids. These data unveil profound metabolic abnormalities in human failing hearts.

3.
Front Cardiovasc Med ; 7: 582407, 2020.
Article in English | MEDLINE | ID: mdl-33134326

ABSTRACT

Background: No medical therapies exist to treat right ventricular (RV) remodeling and RV failure (RVF), in large part because molecular pathways that are specifically activated in pathologic human RV remodeling remain poorly defined. Murine models have suggested involvement of Wnt signaling, but this has not been well-defined in human RVF. Methods: Using a candidate gene approach, we sought to identify genes specifically expressed in human pathologic RV remodeling by assessing the expression of 28 WNT-related genes in the RVs of three groups: explanted nonfailing donors (NF, n = 29), explanted dilated and ischemic cardiomyopathy, obtained at the time of cardiac transplantation, either with preserved RV function (pRV, n = 78) or with RVF (n = 35). Results: We identified the noncanonical WNT receptor ROR2 as transcriptionally strongly upregulated in RVF compared to pRV and NF (Benjamini-Hochberg adjusted P < 0.05). ROR2 protein expression correlated linearly to mRNA expression (R 2 = 0.41, P = 8.1 × 10-18) among all RVs, and to higher right atrial to pulmonary capillary wedge ratio in RVF (R 2 = 0.40, P = 3.0 × 10-5). Utilizing Masson's trichrome and ROR2 immunohistochemistry, we identified preferential ROR2 protein expression in fibrotic regions by both cardiomyocytes and noncardiomyocytes. We compared RVF with high and low ROR2 expression, and found that high ROR2 expression was associated with increased expression of the WNT5A/ROR2/Ca2+ responsive protease calpain-µ, cleavage of its target FLNA, and FLNA phosphorylation, another marker of activation downstream of ROR2. ROR2 protein expression as a continuous variable, correlated strongly to expression of calpain-µ (R 2 = 0.25), total FLNA (R 2 = 0.67), calpain cleaved FLNA (R 2 = 0.32) and FLNA phosphorylation (R 2 = 0.62, P < 0.05 for all). Conclusion: We demonstrate robust reactivation of a fetal WNT gene program, specifically its noncanonical arm, in human RVF characterized by activation of ROR2/calpain mediated cytoskeleton protein cleavage.

4.
Science ; 370(6514): 364-368, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33060364

ABSTRACT

The heart consumes circulating nutrients to fuel lifelong contraction, but a comprehensive mapping of human cardiac fuel use is lacking. We used metabolomics on blood from artery, coronary sinus, and femoral vein in 110 patients with or without heart failure to quantify the uptake and release of 277 metabolites, including all major nutrients, by the human heart and leg. The heart primarily consumed fatty acids and, unexpectedly, little glucose; secreted glutamine and other nitrogen-rich amino acids, indicating active protein breakdown, at a rate ~10 times that of the leg; and released intermediates of the tricarboxylic acid cycle, balancing anaplerosis from amino acid breakdown. Both heart and leg consumed ketones, glutamate, and acetate in direct proportionality to circulating levels, indicating that availability is a key driver for consumption of these substrates. The failing heart consumed more ketones and lactate and had higher rates of proteolysis. These data provide a comprehensive and quantitative picture of human cardiac fuel use.


Subject(s)
Fatty Acids/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Acetates/metabolism , Aged , Blood Glucose/metabolism , Citric Acid Cycle , Female , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Ketones/metabolism , Leg/blood supply , Male , Metabolomics , Middle Aged , Myocardial Contraction , Proteolysis
5.
Annu Rev Physiol ; 81: 139-164, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30485760

ABSTRACT

Branched chain amino acids (BCAAs) are building blocks for all life-forms. We review here the fundamentals of BCAA metabolism in mammalian physiology. Decades of studies have elicited a deep understanding of biochemical reactions involved in BCAA catabolism. In addition, BCAAs and various catabolic products act as signaling molecules, activating programs ranging from protein synthesis to insulin secretion. How these processes are integrated at an organismal level is less clear. Inborn errors of metabolism highlight the importance of organismal regulation of BCAA physiology. More recently, subtle alterations of BCAA metabolism have been suggested to contribute to numerous prevalent diseases, including diabetes, cancer, and heart failure. Understanding the mechanisms underlying altered BCAA metabolism and how they contribute to disease pathophysiology will keep researchers busy for the foreseeable future.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Animals , Humans , Insulin/metabolism , Signal Transduction/physiology
6.
Cell Metab ; 29(2): 417-429.e4, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30449684

ABSTRACT

Elevations in branched-chain amino acids (BCAAs) associate with numerous systemic diseases, including cancer, diabetes, and heart failure. However, an integrated understanding of whole-body BCAA metabolism remains lacking. Here, we employ in vivo isotopic tracing to systemically quantify BCAA oxidation in healthy and insulin-resistant mice. We find that most tissues rapidly oxidize BCAAs into the tricarboxylic acid (TCA) cycle, with the greatest quantity occurring in muscle, brown fat, liver, kidneys, and heart. Notably, pancreas supplies 20% of its TCA carbons from BCAAs. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a clinically targeted regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Together, this work provides a quantitative framework for understanding systemic BCAA oxidation in health and insulin resistance.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Insulin Resistance/physiology , Insulin/metabolism , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Animals , Citric Acid Cycle , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oxidation-Reduction
7.
EMBO J ; 38(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30552228

ABSTRACT

The mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) controls cell growth, proliferation, and metabolism in response to diverse stimuli. Two major parallel pathways are implicated in mTORC1 regulation including a growth factor-responsive pathway mediated via TSC2/Rheb and an amino acid-responsive pathway mediated via the Rag GTPases. Here, we identify and characterize three highly conserved growth factor-responsive phosphorylation sites on RagC, a component of the Rag heterodimer, implicating cross talk between amino acid and growth factor-mediated regulation of mTORC1. We find that RagC phosphorylation is associated with destabilization of mTORC1 and is essential for both growth factor and amino acid-induced mTORC1 activation. Functionally, RagC phosphorylation suppresses starvation-induced autophagy, and genetic studies in Drosophila reveal that RagC phosphorylation plays an essential role in regulation of cell growth. Finally, we identify mTORC1 as the upstream kinase of RagC on S21. Our data highlight the importance of RagC phosphorylation in its function and identify a previously unappreciated auto-regulatory mechanism of mTORC1 activity.


Subject(s)
Amino Acids/metabolism , Drosophila melanogaster/metabolism , Homeostasis , Intercellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Amino Acid Sequence , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , HEK293 Cells , HeLa Cells , Humans , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , Multiprotein Complexes/genetics , Phosphorylation , Sequence Homology , Signal Transduction
8.
Cell Rep ; 12(6): 937-43, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26235620

ABSTRACT

The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Cell Line , Enzyme Inhibitors/pharmacology , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 2 , Multiprotein Complexes/genetics , Phosphorylation/drug effects , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...