Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mass Spectrom (Tokyo) ; 10(1): A0096, 2021.
Article in English | MEDLINE | ID: mdl-34136324

ABSTRACT

The gas-phase adsorption of N2 on protonated serine (Ser, C3H7NO3), threonine (Thr, C4H9NO3), glycine (Gly, C2H5NO2), and 2-aminoethanol (C2H7NO) was investigated using a tandem mass spectrometer equipped with an electrospray ionization source and a cold ion trap. N2 molecules were adsorbed on the free X-H (X=O and N) groups of protonated molecules. Gas-phase N2 adsorption-mass spectrometry detected the presence of free X-H groups in the molecular structures, and was applied to the structural elucidation of small molecules. When the 93 structures with an elemental composition of C3H7NO3 were filtered using the gas-phase N2 adsorption-mass spectrometry results for Ser, the number of possible molecular structures was reduced to 8 via the quantification of the X-H groups. Restricting and minimizing the number of possible candidates were effective steps in the structural elucidation process. Gas-phase N2 adsorption-mass spectrometry combined with mass spectrometry-based techniques has the potential for being useful for elucidating the molecular structures of a variety of molecules.

2.
Anal Biochem ; 619: 114151, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33684343

ABSTRACT

Chiral recognition between amino acids and monosaccharides in the gas phase was investigated as a model for chemical evolution in interstellar molecular clouds. Ultraviolet (UV) photodissociation spectra and product ion spectra of cold gas-phase hydrogen-bonded clusters of protonated tryptophan (Trp) and a pentose, including ribose and arabinose, were obtained using a tandem mass spectrometer equipped with an electrospray ionization source and a temperature-controlled ion trap. The relative intensity of the signal arising from the S1-S0 transition of protonated Trp observed at approximately 285 nm in the UV photodissociation spectrum of homochiral H+(d-Trp)(d-ribose) was significantly higher than that of heterochiral H+(l-Trp)(d-ribose), corresponding to the ππ* state of the Trp indole ring. Optical properties of Trp in the clusters induced by 285-nm photoexcitation were applied to the identification and quantification of pentose enantiomers in solution. Pentose enantiomeric excess in solution was determined from relative abundances observed in a single product ion spectrum of 285-nm photoexcited hydrogen-bonded clusters of H+(l-Trp) and pentose. A mixture of two pentoses could also be quantified by this method. The geometric and electronic structures of Trp enable recognition of biological molecules through hydrogen bonding.


Subject(s)
Monosaccharides/chemistry , Tryptophan/chemistry , Hydrogen Bonding , Stereoisomerism , Tandem Mass Spectrometry
3.
Orig Life Evol Biosph ; 51(1): 61-70, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33587241

ABSTRACT

Gas-phase molecular adsorption was investigated as a model for molecular cloud formation. Molecular adsorption on cold gas-phase hydrogen-bonded clusters containing protonated tryptophan (Trp) enantiomers and monosaccharides such as methyl-α-D-glucoside, D-ribose, and D-arabinose was detected using a tandem mass spectrometer equipped with an electrospray ionization source and cold ion trap. The adsorption sites on the surface of cold gas-phase hydrogen-bonded cluster ions were quantified using gas-phase N2 adsorption-mass spectrometry. The gas-phase N2 adsorption experiments indicated that the number of adsorption sites on the surface of the hydrogen-bonded heterochiral clusters containing L-Trp and D-monosaccharides exceeded the number of adsorption sites on the homochiral clusters containing D-Trp and D-monosaccharides. H2O molecules were preferentially adsorbed on the heterochiral clusters, and larger water clusters were formed in the gas phase. Physical and chemical properties of cold gas-phase hydrogen-bonded clusters containing biological molecules were useful for investigating enantiomer selectivity and chemical evolution in interstellar molecular clouds.


Subject(s)
Gases/chemistry , Hydrogen/chemistry , Origin of Life , Adsorption , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...