Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 592: 120004, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33127489

ABSTRACT

The aim of this study was to develop and evaluate novel polyglycerol fatty acid ester (PGFE)-based nanoparticles (NPs) for the dermal delivery of tocopherol acetate (TA). TA-loaded PGFE-based NPs (PGFE-NPs) were prepared by mixing PGFE, soya phosphatidylcholine, dimyristoylphosphatidylglycerol, and TA with film using the film rehydration and extrusion method. The prepared formulations were analyzed by dynamic light scattering, small-angle X-ray diffraction and polarization microscopy. An in vitro skin accumulation test was performed with TA under occlusive and non-occlusive applications, using Yucatan micropig skin. The size range of the TA-loaded liposome and PGFE-NPs was 107-128 nm, and they were encapsulated in 1.6-2.3 mg/mL TA. All PGFE-NP formulations were negatively charged and stable for 2 weeks. Under occlusive applications, all formulations induced small amounts of TA accumulation in the epidermis but not in the dermis. However, under non-occlusive applications, some of PGFE-NP formulations enhanced TA accumulation in the epidermis. Furthermore, only the polyglycerol 4-laurate (PG4L)-based formulation induced dermal TA accumulation with the change in the formulation from a vesicular to bilayer stacked structure following water evaporation under non-occlusive applications. These results indicated that the novel TA-loaded PG4L formulation enabled the dermal delivery of TA in non-occlusive applications.


Subject(s)
Nanoparticles , alpha-Tocopherol , Animals , Drug Delivery Systems , Esters , Fatty Acids , Glycerol , Particle Size , Polymers , Swine , Swine, Miniature
2.
Biosci Biotechnol Biochem ; 67(10): 2194-202, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14586108

ABSTRACT

Aspergillus kawachii produces two kinds of alpha-amylase, one is an acid-unstable alpha-amylase and the other is an acid-stable alpha-amylase. Because the quality of the shochu depends strongly on the activities of the alpha-amylases, the culture conditions under which these alpha-amylases are produced were examined. In liquid culture, acid-unstable alpha-amylase was produced abundantly, but, acid-stable alpha-amylase was not produced. The acid-unstable alpha-amylase was produced significantly when glycerol or glucose was used as a carbon source, similarly to the use of inducers such as starch or maltose. In liquid culture, A. kawachii assimilated starch at pH 3.0, but no alpha-amylase activity was recognized in the medium. Instead, the alpha-amylase was found to be trapped in the cell wall. The trapped form was identified as acid-unstable alpha-amylase. Usually, acid-unstable alpha-amylase is unstable at pH 3.0, so its stability appeared to be due to its immobilization in the cell wall. In solid-state culture, both kinds of alpha-amylase were produced. The production of acid-stable alpha-amylase seems to be solid-state culture-specific and was affected by the moisture content in the solid medium.


Subject(s)
Aspergillus/enzymology , alpha-Amylases/biosynthesis , Aspergillus/genetics , Aspergillus/metabolism , Cell Wall/enzymology , Culture Media , Enzyme Stability , Hydrogen-Ion Concentration , alpha-Amylases/isolation & purification
3.
Anal Sci ; 19(3): 401-4, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12675348

ABSTRACT

A sensitive and simple method for the determination of trace amounts of indium in water samples by graphite furnace atomic absorption spectrometry (GFAAS) after coprecipitation with chitosan was investigated. Indium was quantitatively preconcentrated from water samples by coprecipitation with chitosan at pH 7.0-9.0. The coprecipitant was easily dissolved with acetic acid, and indium in the resulting solution was determined by GFAAS. The addition of lanthanum as a chemical modifier was more effective for the atomic absorbance of indium. The detection limit (S/N > or = 3) for indium was 0.04 microg dm(-3), and the relative standard deviations (n = 5) were 3.5-4.5% at 1.0 microg/100 cm3. The results obtained in this study indicate that the proposed method can be successfully applied to the determination of trace indium in water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...