Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(6): 5497-5505, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816676

ABSTRACT

Low-temperature direct synthesis of thick multilayered hexagonal-boron nitride (h-BN) on semiconducting and insulating substrates is required to produce high-performance electronic devices based on two-dimensional (2D) materials. In this study, multilayered h-BN with a thickness exceeding 5 nm was directly synthesized on quartz and Si at low temperatures, between 400 and 500 °C, by inductively coupled plasma-enhanced chemical vapor deposition using borazine as the precursor material. The quality and thickness of the h-BN crystals were investigated with respect to synthesis parameters, namely, temperature, radio frequency power, N2 flow rate, and H2 flow rate. Introducing N2 and H2 carrier gases critically affected the deposition rate, and increasing the carrier gas flow rate enhanced the h-BN crystal quality. The typical optical band gap of synthesized h-BN was approximately 5.8 eV, consistent with that of previous studies. The full width at half-maximum of the h-BN Raman peak was 32-33 cm-1, comparable to that of commercially available multilayered h-BN on Cu foil. These results are expected to facilitate the development of 2D materials for electronics applications.

2.
ACS Appl Mater Interfaces ; 14(49): 54670-54675, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36383763

ABSTRACT

With the development of practical thin-film batteries, multilayer graphene (MLG) is being actively investigated as an anode material. Therefore, research on determining a technique to fabricate thick MLG on arbitrary substrates at low temperatures is essential. In this study, we formed an MLG with controlled thickness at low temperatures using a layer exchange (LE) technique and evaluated its anode properties. The LE technique enabled the formation of a uniform MLG with a wide range of thicknesses (25-500 nm) on Ta foil. The charge/discharge characterization using coin-type cells revealed that the total capacity, which corresponded to Li intercalation into the MLG interlayer, increased with increasing MLG thickness. In contrast, cross-sectional transmission electron microscopy showed a metal oxide formed at the MLG/Ta interface during annealing, which had small Li capacity. MLG with sufficient thickness (500 nm) exhibited an excellent Coulombic efficiency and capacity retention compared to bulk graphite formed at high temperatures. These results have led to the development of inexpensive and reliable rechargeable thin-film batteries.

3.
Nanotechnology ; 32(47)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34384058

ABSTRACT

Low-temperature synthesis of multilayer graphene (MLG) on arbitrary substrates is the key to incorporating MLG-based functional thin films, including transparent electrodes, low-resistance wiring, heat spreaders, and battery anodes in advanced electronic devices. This paper reviews the synthesis of MLG via the layer exchange (LE) phenomenon between carbon and metal from its mechanism to the possibility of device applications. The mechanism of LE is completely different from that of conventional MLG precipitation methods using metals, and the resulting MLG exhibits unique features. Modulation of metal species and growth conditions enables synthesis of high-quality MLG over a wide range of growth temperatures (350 °C-1000 °C) and MLG thicknesses (5-500 nm). Device applications are discussed based on the high electrical conductivity (2700 S cm-1) of MLG and anode operation in Li-ion batteries. Finally, we discuss the future challenges of LE for MLG and its application to flexible devices.

4.
ACS Omega ; 4(10): 14251-14254, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31508548

ABSTRACT

Layer exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality multilayer graphene (MLG) on insulators at low temperatures. We investigated the effects of the a-C/Ni multilayer structure on the quality of MLG formed by Ni-induced layer exchange. The crystal quality and electrical conductivity of MLG improved dramatically as the number of a-C/Ni multilayers increased. A 600 °C-annealed sample in which 15 layers of 4-nm-thick a-C and 0.5-nm-thick Ni were laminated recorded an electrical conductivity of 1430 S/cm. This value is close to that of highly oriented pyrolytic graphite synthesized at approximately 3000 °C. This improvement is likely related to the bond weakening in a-C due to the screening effect of Ni. We expect that these results will contribute to low-temperature synthesis of MLG using a solid-phase reaction with metals.

5.
ACS Omega ; 4(4): 6677-6680, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459793

ABSTRACT

Low-temperature synthesis of multilayer graphene (MLG) is essential for combining advanced electronic devices with carbon materials. We investigated the vapor-phase synthesis of MLG by sputtering deposition of C atoms on metal-coated insulators. Ni, Co, and Fe catalysts, which have high C solid solubility, enabled us to form MLG at 400 °C. The domain size and surface coverage of MLG were determined by the supplied amount of C atoms and the thickness of the metal layer associated with the solid solution amount of C. An average domain size of 2.5 µm and surface coverage of approximately 50% were obtained for a 1 µm thick Ni layer. Transmission electron microscopy demonstrated the high crystalline quality of the MLG layer despite the low processing temperature. Therefore, this simple sputtering technique has great potential for integrating graphene-based devices on various platforms.

6.
Sci Rep ; 9(1): 4068, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30858422

ABSTRACT

The layer exchange technique enables high-quality multilayer graphene (MLG) on arbitrary substrates, which is a key to combining advanced electronic devices with carbon materials. We synthesize uniform MLG layers of various thicknesses, t, ranging from 5 nm to 200 nm using Ni-induced layer exchange at 800 °C. Raman and transmission electron microscopy studies show the crystal quality of MLG is relatively low for t ≤ 20 nm and dramatically improves for t ≥ 50 nm when we prepare a diffusion controlling Al2O3 interlayer between the C and Ni layers. Hall effect measurements reveal the carrier mobility for t = 50 nm is 550 cm2/Vs, which is the highest Hall mobility in MLG directly formed on an insulator. The electrical conductivity (2700 S/cm) also exceeds a highly oriented pyrolytic graphite synthesized at 3000 °C or higher. Synthesis technology of MLG with a wide range of thicknesses will enable exploration of extensive device applications of carbon materials.

7.
ACS Appl Mater Interfaces ; 10(48): 41664-41669, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30403335

ABSTRACT

Metal-induced layer-exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality, uniform multilayer graphene (MLG) directly on an insulating material. Here, we investigated the effect of transition-metal species on the interaction between metals and a-C in the temperature range of 600-1000 °C. As a result, metals were classified into four groups: (1) layer exchange (Co, Ni, Cr, Mn, Fe, Ru, Ir, and Pt), (2) carbonization (Ti, Mo, and W), (3) local MLG formation (Pd), and (4) no graphitization (Cu, Ag, and Au). Some layer-exchange metals allowed for low-temperature MLG synthesis at 600 °C, whereas others allowed for high-quality MLG with a Raman G/D peak ratio of up to 8.3. Based on the periodic table, we constructed metal selection guidelines for growing MLG on an insulator, opening the door for applications that combine advanced electronic devices with carbon materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...