Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(10): e0223604, 2019.
Article in English | MEDLINE | ID: mdl-31600278

ABSTRACT

INTRODUCTION: While extracorporeal membrane oxygenation (ECMO) is effective in preventing further hypoxemia and maintains blood flow in endotoxin-induced shock, ECMO alone does not reverse the hypotension. In this study, we tested whether concurrent vasopressor use with ECMO would provide increased circulatory support and blood flow, and characterized regional blood flow distribution to vital organs. METHODS: Endotoxic shock was induced in piglets to achieve a 30% decrease in mean arterial pressure (MAP). Measurements of untreated pigs were compared to pigs treated with ECMO alone or ECMO and vasopressors. RESULTS: ECMO provided cardiac support during vasodilatory endotoxic shock and improved oxygen delivery, but vasopressor therapy was required to return MAP to normotensive levels. Increased blood pressure with vasopressors did not alter oxygen consumption or extraction compared to ECMO alone. Regional microcirculatory blood flow (RBF) to the brain, kidney, and liver were maintained or increased during ECMO with and without vasopressors. CONCLUSION: ECMO support and concurrent vasopressor use improve regional blood flow and oxygen delivery even in the absence of full blood pressure restoration. Vasopressor-induced selective distribution of blood flow to vital organs is retained when vasopressors are administered with ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Microcirculation , Regional Blood Flow , Shock, Septic/drug therapy , Shock, Septic/physiopathology , Vasoconstrictor Agents/therapeutic use , Animals , Hemodynamics/drug effects , Microcirculation/drug effects , Oxygen/metabolism , Regional Blood Flow/drug effects , Respiratory Function Tests , Swine , Vasoconstrictor Agents/pharmacology
2.
ASAIO J ; 62(6): 732-736, 2016.
Article in English | MEDLINE | ID: mdl-27442858

ABSTRACT

Cerebrovascular injury while on extracorporeal membrane oxygenation (ECMO) may be caused by excessive brain perfusion during hypoxemic reperfusion. Previous studies have postulated that the most vulnerable period of time for cerebrovascular injury is during the transfer period to ECMO. Therefore, our objective was to compare brain perfusion and hemodynamics in a piglet endotoxic shock ECMO model. The effect of ECMO flow on microcirculation of different brain regions was compared between 10 control pigs and six pigs (7-10 kg) administered IV endotoxin to achieve a drop in mean arterial blood pressure (MAP) of at least 30%. Cardiac output (CO), brain oxygen utilization, and microcirculatory blood flow (BF) were compared at baseline and 2 hours after ECMO stabilization. Matching ECMO delivery with baseline CO in control animals increased perfusion (p < 0.05) in all areas of the brain. In contrast, with endotoxin, ECMO returned perfusion closer to baseline levels in all regions of the brain and maintained brain tissue oxygen consumption. Both control and endotoxic pigs showed no evidence of acute neuronal necrosis in histologic cerebral cortical sections examined after 2 hours of ECMO. Results show that during endotoxic shock, transition to ECMO can maintain brain BF equally to all brain regions without causing overperfusion, and does not appear to cause brain tissue histopathologic changes (hemorrhage or necrosis) during the acute stabilization period after ECMO induction.


Subject(s)
Cerebrovascular Circulation , Extracorporeal Membrane Oxygenation , Shock, Septic/physiopathology , Animals , Cerebrovascular Circulation/physiology , Extracorporeal Membrane Oxygenation/methods , Female , Male , Microcirculation , Swine
3.
Shock ; 43(5): 475-82, 2015 May.
Article in English | MEDLINE | ID: mdl-25565637

ABSTRACT

Vasopressors are gaining renewed interest as treatment adjuncts in hemorrhagic shock. The ideal vasoconstrictor will increase systemic blood pressure without increasing pulmonary vascular resistance (PVR), which hinders pulmonary perfusion and exacerbates hypoxemia. However, the selectivity of pressors for pulmonary versus systemic vasoconstriction during hemorrhage has not been characterized. The purpose of this study was to test the hypothesis that vasopressin (VP) has distinct effects on pulmonary versus systemic hemodynamics, unlike the catecholamine vasopressors norepinephrine (NE) and phenylephrine (PE). Anesthetized and ventilated pigs were assigned to resuscitation with saline only (n = 7) or saline with VP (n = 6), NE (n = 6), or PE (n = 6). Animals were hemorrhaged to a target volume of 30 mL/kg and a mean arterial pressure of 35 mmHg. One hour after the start of hemorrhage, animals were resuscitated with saline up to one shed blood volume, followed by either additional saline or a vasopressor. Hemodynamics and oxygenation were measured hourly for 4 h after the start of hemorrhage. Vasopressin increased systemic vascular resistance (SVR) while sparing the pulmonary vasculature, leading to a 45% decrease in the PVR/SVR ratio compared with treatment with PE. Conversely, NE induced pulmonary hypertension and led to an increased PVR/SVR ratio associated with decreased oxygen saturation. Phenylephrine and crystalloid had no significant effect on the PVR/SVR ratio. Sparing of pulmonary vasoconstriction occurs only with VP, not with administration of crystalloid or catecholamine pressors. The ability of VP to maintain blood oxygenation indicates that VP may prevent hypoxemia in the management of hemorrhagic shock.


Subject(s)
Lypressin/therapeutic use , Pulmonary Artery/drug effects , Shock, Hemorrhagic/drug therapy , Vascular Resistance/drug effects , Animals , Blood Pressure , Catheterization , Disease Models, Animal , Female , Heart Rate/drug effects , Hemodynamics , Hemorrhage , Male , Oxygen Consumption , Swine , Vasoconstriction/drug effects , Vasoconstrictor Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...