Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 196: 172972, 2020 09.
Article in English | MEDLINE | ID: mdl-32562717

ABSTRACT

Phosphodiesterase (PDE) 10A is an attractive therapeutic target for schizophrenia. Here, we investigated the antipsychotic-like effects of a novel PDE10A inhibitor, 1-({2-(7-fluoro-3-methylquinoxalin-2-yl)-5-[(3R)-3-fluoropyrrolidin-1-yl]pyrazolo[1,5-α]pyrimidin-7-yl}amino)-2-methylpropan-2-ol hydrochloride (MT-3014) in rats. MT-3014 showed a potent and selective inhibitory effect against PDE10A (IC50 = 0.357 nmol/L). Oral administration of MT-3014 (1.0-10 mg/kg) significantly increased the levels of cAMP, cGMP and cAMP response element-binding protein (CREB) phosphorylation in the rat striatum. MT-3014 decreased MK-801 (0.075 mg/kg)-induced hyperactivity (ED50 = 0.30 mg/kg) in a dose-dependent manner, although it decreased spontaneous locomotion in control rats (ED50 = 0.48 mg/kg); its effects were equivalent to those of risperidone. MT-3014 (0.3-3.0 mg/kg and 0.2 mg/kg) attenuated MK-801-induced prepulse inhibition deficits and cognitive deficits in rats, respectively, whereas risperidone attenuated MK-801-induced prepulse inhibition at only a high dose and failed to improve MK-801-induced cognitive deficits. Similar to risperidone (ID50 = 0.63 mg/kg), MT-3014 suppressed the conditioned avoidance response (ID50 = 0.32 mg/kg). Interestingly, MT-3014 did not elicit catalepsy and plasma prolactin increases at high doses. Furthermore, it also did not affect body weight. A positron emission tomography study using [11C]IMA107 showed a plasma concentration-dependent increase in brain PDE10A occupancy after oral administration of MT-3014 within the pharmacological dose range in rats. Brain PDE10A occupancy corresponding to the ID50 value in the conditioned avoidance response was approximately 60%, predicting the target occupancy in patients with schizophrenia. These results suggest that MT-3014 may be a novel antipsychotic drug, which is expected to have additional effects on cognitive impairment, without the prominent side effects associated with current atypical antipsychotics.


Subject(s)
Antipsychotic Agents/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrrolidines/pharmacology , Animals , Cognition/drug effects , Male , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography , Rats , Rats, Wistar
2.
Bioorg Med Chem Lett ; 26(5): 1365-70, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26869194

ABSTRACT

A phenotypic screening of thienodiazepines derived from a hit compound found through a binding assay targeting co-stimulatory molecules on T cells and antigen presenting cells successfully led to the discovery of a thienotriazolodiazepine compound (7f) possessing potent immunosuppressive activity. A chemical biology approach has succeeded in revealing that 7f is a first inhibitor of epigenetic bromodomain-containing proteins. 7f is expected to become an anti-cancer agent as well as an immunosuppressive agent.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , CD28 Antigens/metabolism , Drug Discovery , Immunosuppressive Agents/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Azepines/chemical synthesis , Azepines/chemistry , CD28 Antigens/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Acetyltransferases , Histone Chaperones , Humans , Immunosuppressive Agents/chemical synthesis , Immunosuppressive Agents/chemistry , Molecular Structure , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Phenotype , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
3.
Int Immunol ; 21(2): 187-201, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19147836

ABSTRACT

The immune response is regulated, in part, by effector cells whose activation requires multiple signals. For example, T cells require signals emanating from the T cell antigen receptor and co-stimulatory molecules for full activation. Here, we present evidence indicating that IgE-mediated hypersensitivity reactions in vivo also require cognate signals to activate mast cells. Immediate hypersensitivity reactions in the conjunctiva are ablated in mice deficient in eotaxin-1, despite normal numbers of tissue mast cells and levels of IgE. To further define the co-stimulatory signals mediated by chemokine receptor 3 (CCR3), an eotaxin-1 receptor, effects of CCR3 blockade were tested with an allergic conjunctivitis model and in ex vivo isolated connective tissue-type mast cells. Our results show that CCR3 blockade significantly suppresses allergen-mediated hypersensitivity reactions as well as IgE-mediated mast cell degranulation. We propose that a co-stimulatory axis by CCR3, mainly stimulated by eotaxin-1, is pivotal in mast cell-mediated hypersensitivity reactions.


Subject(s)
Allergens/metabolism , Chemokine CCL11/immunology , Conjunctivitis, Allergic/immunology , Conjunctivitis, Allergic/prevention & control , Glycoproteins/metabolism , Mast Cells/metabolism , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/metabolism , Allergens/immunology , Animals , Cats , Cell Degranulation/immunology , Chemokine CCL11/metabolism , Conjunctiva/immunology , Conjunctiva/pathology , Conjunctivitis, Allergic/genetics , Glycoproteins/immunology , Immunoglobulin E/blood , Mast Cells/immunology , Mast Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, CCR3/genetics , Receptors, CCR3/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Skin/immunology , Skin/pathology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...