Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Genes Cells ; 29(5): 438-445, 2024 May.
Article in English | MEDLINE | ID: mdl-38528683

ABSTRACT

In the nervous system, proteasomes are important for proteolysis and cellular homeostasis of neurons and glial cells and for brain health. Proteasome function declines with age in many tissues, including the nervous system, and this decline affects many of the nervous system processes important to brain health and may be related to age-related cognitive decline. Therefore, we analyzed the factors that contribute to this decline in function using the brain of mice from different months of life. Peptidase activity of proteasomes in crude extracts decreased with aging, while ubiquitinated proteins increased with aging. Additionally, there was a tendency for the number of subunits that form proteasomes to decrease slightly with age. On the other hand, ump1, which is required for proteasome formation, accumulated with age. Therefore, analysis of proteasome dynamics in each month revealed that proteasome formation decreased with aging. This study suggests that with aging, not only 20S proteasome function but also 26 proteasome function decreases, the decline in proteasome function is due to the lack of proteasome formation, the PA28-20S-PA700 complex, which is involved in immunity, increases in the brain, and one factor in this lack of proteasome formation is that the proteins called UMP1.


Subject(s)
Aging , Brain , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Animals , Aging/metabolism , Brain/metabolism , Mice , Mice, Inbred C57BL , Male
2.
J Biochem ; 175(5): 473-480, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38348509

ABSTRACT

Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.


Subject(s)
Aging , Autophagy , Cellular Senescence , Proteasome Endopeptidase Complex , Proteolysis , Proteostasis , Humans , Cellular Senescence/physiology , Aging/metabolism , Animals , Autophagy/physiology , Proteostasis/physiology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Lysosomes/metabolism
3.
Front Immunol ; 14: 1186154, 2023.
Article in English | MEDLINE | ID: mdl-38022666

ABSTRACT

The thymus has the ability to regenerate from acute injury caused by radiation, infection, and stressors. In addition to thymocytes, thymic epithelial cells in the medulla (mTECs), which are crucial for T cell self-tolerance by ectopically expressing and presenting thousands of tissue-specific antigens (TSAs), are damaged by these insults and recover thereafter. However, given recent discoveries on the high heterogeneity of mTECs, it remains to be determined whether the frequency and properties of mTEC subsets are restored during thymic recovery from radiation damage. Here we demonstrate that acute total body irradiation with a sublethal dose induces aftereffects on heterogeneity and gene expression of mTECs. Single-cell RNA-sequencing (scRNA-seq) analysis showed that irradiation reduces the frequency of mTECs expressing AIRE, which is a critical regulator of TSA expression, 15 days after irradiation. In contrast, transit-amplifying mTECs (TA-mTECs), which are progenitors of AIRE-expressing mTECs, and Ccl21a-expressing mTECs, were less affected. Interestingly, a detailed analysis of scRNA-seq data suggested that the proportion of a unique mTEC cluster expressing Ccl25 and a high level of TSAs was severely decreased by irradiation. In sum, we propose that the effects of acute irradiation disrupt the heterogeneity and properties of mTECs over an extended period, which potentially leads to an impairment of thymic T cell selection.


Subject(s)
Transcription Factors , Transcriptome , Mice , Animals , Transcription Factors/metabolism , Cell Differentiation , Mice, Inbred C57BL , Epithelial Cells/metabolism
4.
Cell Rep ; 42(8): 112880, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37541257

ABSTRACT

The proteasome plays a central role in intracellular protein degradation. Age-dependent decline in proteasome activity is associated with cellular senescence and organismal aging; however, the mechanism by which the proteasome plays a role in senescent cells remains elusive. Here, we show that nuclear foci that contain the proteasome and exhibit liquid-like properties are formed in senescent cells. The formation of senescence-associated nuclear proteasome foci (SANPs) is dependent on ubiquitination and RAD23B, similar to previously known nuclear proteasome foci, but also requires proteasome activity. RAD23B knockdown suppresses SANP formation and increases mitochondrial activity, leading to reactive oxygen species production without affecting other senescence traits such as cell-cycle arrest and cell morphology. These findings suggest that SANPs are an important feature of senescent cells and uncover a mechanism by which the proteasome plays a role in senescent cells.


Subject(s)
Cell Nucleus , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Cell Nucleus/metabolism , Ubiquitination , Cellular Senescence
5.
FEBS J ; 290(17): 4200-4223, 2023 09.
Article in English | MEDLINE | ID: mdl-37151120

ABSTRACT

Caspases cleave over 1500 substrates in the human proteome in both lethal and non-lethal scenarios. However, reports of the physiological consequences of substrate cleavage are limited. Additionally, the manner in which caspase cleaves only a subset of substrates in the non-lethal scenario remains to be elucidated. BubR1, a spindle assembly checkpoint component, is a caspase substrate in humans, the physiological function of which remains unclear. Here, we found that caspases, especially Drice, cleave Drosophila BubR1 between the N-terminal KEN box motif and C-terminal kinase domain. By using proximity labelling, we found that Drice, but not Dcp-1, is in proximity to BubR1, suggesting that protein proximity facilitates substrate preference. The cleaved fragments displayed altered subcellular localization and protein-protein interactions. Flies that harboured cleavage-resistant BubR1 showed longer duration of BubR1 localization to the kinetochore upon colchicine treatment. Furthermore, these flies showed extended lifespan. Thus, we propose that the caspase-mediated cleavage of BubR1 limits spindle assembly checkpoint and organismal lifespan. Our results highlight the importance of the individual analysis of substrates in vivo to determine the biological significance of caspase-dependent non-lethal cellular processes.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Humans , Drosophila/genetics , Drosophila/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , M Phase Cell Cycle Checkpoints/genetics , Spindle Apparatus/genetics , Caspases/genetics , Caspases/metabolism , Longevity/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
6.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37103220

ABSTRACT

Muscle atrophy is the cause and consequence of obesity. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum (ER) stress and insulin resistance in the liver and adipose tissues. However, obesity-associated regulation of proteasome function and its role in the skeletal muscles remains underinvestigated. Here, we established skeletal muscle-specific 20S proteasome assembly chaperone-1 (PAC1) knockout (mPAC1KO) mice. A high-fat diet (HFD) activated proteasome function by ∼8-fold in the skeletal muscles, which was reduced by 50% in mPAC1KO mice. mPAC1KO induced unfolded protein responses in the skeletal muscles, which were reduced by HFD. Although the skeletal muscle mass and functions were not different between the genotypes, genes involved in the ubiquitin proteasome complex, immune response, endoplasmic stress, and myogenesis were coordinately upregulated in the skeletal muscles of mPAC1KO mice. Therefore, we introduced an immobilization-induced muscle atrophy model in obesity by combining HFD and immobilization. mPAC1KO downregulated atrogin-1 and MuRF1, together with their upstream Foxo1 and Klf15, and protected against disused skeletal muscle mass reduction. In conclusion, obesity elevates proteasome functions in the skeletal muscles. PAC1 deficiency protects mice from immobilization-induced muscle atrophy in obesity. These findings suggest obesity-induced proteasome activation as a possible therapeutic target for immobilization-induced muscle atrophy.


Subject(s)
Muscular Atrophy , Proteasome Endopeptidase Complex , Mice , Male , Animals , Proteasome Endopeptidase Complex/metabolism , Mice, Obese , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism
7.
Cells ; 11(9)2022 05 07.
Article in English | MEDLINE | ID: mdl-35563886

ABSTRACT

The proteasome is a large protein complex responsible for proteolysis in cells. Though the proteasome is widely conserved in all eukaryotes, vertebrates additionally possess tissue-specific proteasomes, termed immunoproteasomes and thymoproteasomes. These specialized proteasomes diverge from constitutive proteasomes in the makeup of their catalytic 20S core particle (CP), whereby the constitutive ß1, ß2, and ß5 catalytic subunits are replaced by ß1i, ß2i, and ß5i in immunoproteasomes, or ß1i, ß2i, and ß5t in thymoproteasomes. However, as constitutive ß1, ß2, and ß5 are also present in tissues and cells expressing immuno- and thymoproteasomes, the specialized proteasomes must be able to selectively incorporate their specific subunits. Here, we review the mechanisms governing the assembly of constitutive and specialized proteasomes elucidated thus far. Studies have revealed that ß1i and ß2i are added onto the α-ring of the CP prior to the other ß subunits. Furthermore, ß5i and ß5t can be incorporated independent of ß4, whereas constitutive ß5 incorporation is dependent on ß4. These mechanisms allow the immuno- and thymoproteasomes to integrate tissue-specific ß-subunits without contamination from constitutive ß1, ß2, and ß5. We end the review with a brief discussion on the diseases caused by mutations to the immunoproteasome and the proteins involved with its assembly.


Subject(s)
Proteasome Endopeptidase Complex , Proteins , Animals , Catalytic Domain , Cytoplasm/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis
8.
Angew Chem Int Ed Engl ; 61(25): e202202779, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35411582

ABSTRACT

We describe a concise and reliable protocol for the precisely controlled tetradeuteration of straight-chain fatty acids (FAs) at the α- and ß-positions that is generally applicable to a variety of FAs, including trans-FAs, polyunsaturated FAs (PUFAs), and their oxidized derivatives. The precisely controlled introduction of four deuterium atoms into the FAs enables their persistent and quantitative tracking by LC-MS/MS analysis based on their molecular structures. In addition, the phosphatidylcholine (PC) species prepared from the tetradeuterated FAs thus obtained give a diagnostic peak, namely, a phosphocholine fragment that contains deuterium, in the LC-MS/MS analysis. With these features, the metabolism of a representative oxidized linoleic acid, that is, hydroxyoctadecadienoic acid (HODE), was investigated, leading to the identification of acyltransferases that transfer the acyl moiety derived from HODE to lysophosphatidylcholine.


Subject(s)
Fatty Acids , Linoleic Acid , Chromatography, Liquid , Deuterium , Linoleic Acids/chemistry , Tandem Mass Spectrometry
9.
J Nutr Biochem ; 105: 108993, 2022 07.
Article in English | MEDLINE | ID: mdl-35331898

ABSTRACT

Recently, we have begun to better understand the regulatory mechanisms of proteasome activity in response to the nutritional state. In this study, we analyzed the expression and function of proteasomes in the livers and brains where changes in the metabolic system occur in vivo during short-term starvation. In the livers of 4-week-old mice, proteasome activity decreased with fasting time, whereas brain proteasome activity remained unchanged by up to 24 h of fasting and then decreased. However, liver and brain proteasome activity in 24-week-old mice decreased by fasting for 24 h and then recovered. There was no significant change in the expression levels of the subunits that make up the proteasomes in livers and brains regardless of age, and there was no change in the molecular size of the formed proteasome. Interestingly, Ump1, a proteasome assembly protein, accumulated with changes in proteasome activity. When the fasted state returned to a fed state, the proteasome activity in the brain was restored to almost the same level as in the fed state, but the proteasome activity in the liver was not restored to that of the fed state. In this state, the assembly protein Ump1 continued to accumulate. These findings suggest that (1) the expression of Ump1 is controlled by the nutritional state, and (2) the proteasome formation mechanism may differ depending on the organ.


Subject(s)
Molecular Chaperones , Proteasome Endopeptidase Complex , Animals , Mice , Molecular Chaperones/metabolism , Nutrients , Proteasome Endopeptidase Complex/metabolism
10.
Nat Commun ; 12(1): 6819, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819510

ABSTRACT

Impaired proteasome activity due to genetic variants of certain subunits might lead to proteasome-associated autoinflammatory syndromes (PRAAS). Here we report a de novo heterozygous missense variant of the PSMB9 proteasome subunit gene in two unrelated Japanese infants resulting in amino acid substitution of the glycine (G) by aspartic acid (D) at position 156 of the encoded protein ß1i. In addition to PRAAS-like manifestations, these individuals suffer from pulmonary hypertension and immunodeficiency, which are distinct from typical PRAAS symptoms. The missense variant results in impaired immunoproteasome maturation and activity, yet ubiquitin accumulation is hardly detectable in the patients. A mouse model of the heterozygous human genetic variant (Psmb9G156D/+) recapitulates the proteasome defects and the immunodeficiency phenotype of patients. Structurally, PSMB9 G156D interferes with the ß-ring-ßring interaction of the wild type protein that is necessary for 20S proteasome formation. We propose the term, proteasome-associated autoinflammatory syndrome with immunodeficiency (PRAAS-ID), to indicate a separate category of autoinflammatory diseases, similar to, but distinct from PRAAS, that describes the patients in this study.


Subject(s)
Cysteine Endopeptidases/genetics , Hereditary Autoinflammatory Diseases/genetics , Hypertension, Pulmonary/genetics , Primary Immunodeficiency Diseases/genetics , Proteasome Endopeptidase Complex/metabolism , Animals , Cysteine Endopeptidases/metabolism , Disease Models, Animal , Female , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/pathology , Heterozygote , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/immunology , Infant, Newborn , Male , Mice , Mice, Transgenic , Mutation, Missense , Pedigree , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/pathology , Proteasome Endopeptidase Complex/genetics , Syndrome
11.
iScience ; 24(3): 102145, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33665564

ABSTRACT

Ubiquitination is a major post-translational modification of ribosomal proteins. The role of ubiquitination in the regulation of ribosome functions is still being elucidated. However, the importance of ribosome deubiquitination remains unclear. Here, we show that the cycle of ubiquitination and deubiquitination of the 40S ribosome subunit eS7 is important for efficient translation. eS7 ubiquitination at lysine 83 is required for efficient protein translation. We identified Otu2 and Ubp3 as the deubiquitinating enzymes for eS7. An otu2Δubp3Δ mutation caused a defect in protein synthesis. Ubp3 inhibited polyubiquitination of eS7 in polysomes to keep eS7 in a mono-ubiquitinated form, whereas Otu2 was specifically bound to the free 40S ribosome and promoted the dissociation of mRNAs from 40S ribosomes in the recycling step. Our results provide clues for understanding the molecular mechanism of the translation system via a ubiquitination-deubiquitination cycle.

12.
Cancer Cell ; 39(1): 19-21, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33434510

ABSTRACT

Targeted protein degradation is an emerging technology for drug development. An article published in Nature reported a novel mechanism of targeted protein degradation triggered by small-molecule-induced polymerization of the oncogenic transcription factor BCL6.


Subject(s)
Adhesives , Oncogenes , Humans , Polymerization , Proteolysis , Proto-Oncogene Proteins c-bcl-6/metabolism
13.
Org Biomol Chem ; 18(39): 7827-7831, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32990294

ABSTRACT

A protocol for the hydroxylation of aryl halides catalyzed by copper(i) and sucrose in neat water has been developed. The dual role of sucrose, the reaction pathway, and the high selectivity for hydroxylation were investigated using a combination of experimental and theoretical techniques.

14.
iScience ; 23(7): 101299, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32634741

ABSTRACT

The proteasome is a therapeutic target in cancer, but resistance to proteasome inhibitors often develops owing to the induction of compensatory pathways. Through a genome-wide siRNA screen combined with RNA sequencing analysis, we identified hexokinase and downstream O-GlcNAcylation as cell survival factors under proteasome impairment. The inhibition of O-GlcNAcylation synergistically induced massive cell death in combination with proteasome inhibition. We further demonstrated that O-GlcNAcylation was indispensable for maintaining proteasome activity by enhancing biogenesis as well as proteasome degradation in a manner independent of Nrf1, a well-known compensatory transcription factor that upregulates proteasome gene expression. Our results identify a pathway that maintains proteasome function under proteasome impairment, providing potential targets for cancer therapy.

15.
Int J Mol Sci ; 21(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456207

ABSTRACT

Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin-proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes.


Subject(s)
Nuclear Respiratory Factor 1/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Animals , Endoplasmic Reticulum-Associated Degradation , Humans , Nuclear Respiratory Factor 1/genetics , Proteasome Endopeptidase Complex/genetics
16.
Mol Cell Biol ; 40(10)2020 04 28.
Article in English | MEDLINE | ID: mdl-32123008

ABSTRACT

Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap 'n' collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Molecular Chaperones/metabolism , Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/metabolism , HCT116 Cells , HeLa Cells , Humans , Proteolysis , Ubiquitin/metabolism
17.
Nature ; 578(7794): 296-300, 2020 02.
Article in English | MEDLINE | ID: mdl-32025036

ABSTRACT

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins1,2. A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes3-8, but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological , Ubiquitination , Cell Line , Cell Nucleus/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Humans , Osmotic Pressure , Polyubiquitin/metabolism , Proteolysis , Proteostasis , Ribosomal Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein/metabolism
18.
Cell Rep ; 29(9): 2901-2916.e6, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31775054

ABSTRACT

The thymic function to produce self-protective and self-tolerant T cells is chiefly mediated by cortical thymic epithelial cells (cTECs) and medullary TECs (mTECs). Recent studies including single-cell transcriptomic analyses have highlighted a rich diversity in functional mTEC subpopulations. Because of their limited cellularity, however, the biochemical characterization of TECs, including the proteomic profiling of cTECs and mTECs, has remained unestablished. Utilizing genetically modified mice that carry enlarged but functional thymuses, here we show a combination of proteomic and transcriptomic profiles for cTECs and mTECs, which identified signature molecules that characterize a developmental and functional contrast between cTECs and mTECs. Our results reveal a highly specific impact of the thymoproteasome on proteasome subunit composition in cTECs and provide an integrated trans-omics platform for further exploration of thymus biology.


Subject(s)
Epithelial Cells/metabolism , Proteomics/methods , Thymus Gland/physiopathology , Cell Differentiation , Humans
19.
Genes Cells ; 24(12): 801-813, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31621149

ABSTRACT

The proteasome degradation machinery is essential for a variety of cellular processes including senescence and T-cell immunity. Decreased proteasome activity is associated with the aging process; however, the regulation of the proteasome in CD4+ T cells in relation to aging is unclear. Here, we show that defects in the induction of the proteasome in CD4+ T cells upon T-cell receptor (TCR) stimulation underlie T-cell senescence. Proteasome dysfunction promotes senescence-associated phenotypes, including defective proliferation, cytokine production and increased levels of PD-1+ CD44High CD4+ T cells. Proteasome induction by TCR signaling via MEK-, IKK- and calcineurin-dependent pathways is attenuated with age and decreased in PD-1+ CD44High CD4+ T cells, the proportion of which increases with age. Our results indicate that defective induction of the proteasome is a hallmark of CD4+ T-cell senescence.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Cellular Senescence , Proteasome Endopeptidase Complex/metabolism , Receptors, Antigen, T-Cell/metabolism , Animals , CD4-Positive T-Lymphocytes/physiology , Cell Proliferation , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/genetics , Signal Transduction
20.
Front Immunol ; 10: 2207, 2019.
Article in English | MEDLINE | ID: mdl-31608052

ABSTRACT

Our previous studies of protective immunity and pathology against blood stage malaria parasites have shown that not only CD4+ T cells, but also CD8+ T cells and macrophages, are important for host defense against blood stage malaria infection. Furthermore, we found that Plasmodium yoelii 17XNL (PyNL) parasitizes erythroblasts, the red blood cell (RBC) precursor cells, which then express MHC class I molecules. In the present study, we analyzed spleen cytokine production. In CD8+ T cell-depleted mice, IL-10 production in early stage infection was increased over two-fold relative to infected control animals and IL-10+ CD3- cells were increased, whereas IFN-γ production in the late stage of infection was decreased. At day 16 after PyNL infection, CD8+ T cells produced more IFN-γ than CD4+ T cells. We evaluated the involvement of the immunoproteasome in induction of immune CD8+ T cells, and the role of Fas in protection against PyNL both of which are downstream of IFN-γ. In cell transfer experiments, at least the single molecules LMP7, LMP2, and PA28 are not essential for CD8+ T cell induction. The Fas mutant LPR mouse was weaker in resistance to PyNL infection than WT mice, and 20% of the animals died. LPR-derived parasitized erythroid cells exhibited less externalization of phosphatidylserine (PS), and phagocytosis by macrophages was impaired. Furthermore, we tried to identify the cause of death in malaria infection. Blood lactate concentration was increased in the CD8+ T cell-depleted PyNL-infected group at day 19 (around peak parasitemia) to similar levels as day 7 after infection with a lethal strain of Py. When we injected mice with lactate at day 4 and 6 of PyNL infection, all mice died at day 8 despite demonstrating low parasitemia, suggesting that hyperlactatemia is one of the causes of death in CD8+ T cell-depleted PyNL-infected mice. We conclude that CD8+ T cells might control cytokine production to some extent and regulate hyperparasitemia and hyperlactatemia in protection against blood stage malaria parasites.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Lactates/blood , Malaria/immunology , Parasitemia/immunology , Plasmodium yoelii , Spleen/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Erythrocytes , Female , Immunity, Cellular , Macrophages/immunology , Malaria/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Parasitemia/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...