Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 16(3): 1008-14, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24281390

ABSTRACT

In this work, we grow thin MoS2 films (50-150 nm) uniformly over large areas (>1 cm(2)) with strong basal plane (002) or edge plane (100) orientations to characterize thermal anisotropy. Measurement results are correlated with molecular dynamics simulations of thermal transport for perfect and defective MoS2 crystals. The correlation between predicted (simulations) and measured (experimental) thermal conductivity are attributed to factors such as crystalline domain orientation and size, thereby demonstrating the importance of thermal boundary scattering in limiting thermal conductivity in nano-crystalline MoS2 thin films. Furthermore, we demonstrate that the cross-plane thermal conductivity of the films is strongly impacted by exposure to ambient humidity.

2.
Nanoscale ; 3(9): 3700-4, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21796304

ABSTRACT

The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.


Subject(s)
Bismuth/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Phase Transition , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...